
pyryver
Release 0.4.0

Tyler Tian, Matthew Mirvish and Moeez Muhammad

Jan 02, 2021

CONTENTS

1 Introduction 1
1.1 Prerequisites . 1
1.2 Installation . 1
1.3 Key Information . 1
1.4 Quickstart . 2
1.5 Realtime Quickstart . 3

2 API Reference 5
2.1 Session . 5
2.2 Realtime Client . 11

2.2.1 Callback Task Data Types . 17
2.3 Data Models . 19

2.3.1 Chats . 21
2.3.2 Users . 28
2.3.3 Group Chat Members . 31
2.3.4 Messages (Including Topics) . 32
2.3.5 Tasks . 37
2.3.6 Files . 47
2.3.7 Notifications . 49
2.3.8 Creators . 51

2.4 Utilities . 51
2.4.1 Cache Data Storage . 51
2.4.2 API Helpers . 52
2.4.3 Entity Types . 54
2.4.4 Common Field Names . 54

Python Module Index 55

Index 57

i

ii

CHAPTER

ONE

INTRODUCTION

1.1 Prerequisites

pyryver requires Python 3.6 or later, and is regularly tested against Python 3.6 & Python 3.8. Our only dependency
is on aiohttp.

You may also wish to read aiohttp’s information about optional prerequisites for high-performance workloads.

1.2 Installation

Installing pyryver can either be accomplished by cloning our git repository and doing the normal setup.py
install, or using PyPI:

normal
pip install -U pyryver
if you have multiple versions of python
python3 -m pip install -U pyryver
if you use windows
py -3 -m pip install -U pyryver

1.3 Key Information

In Ryver’s API, the base class is a Chat. This, although somewhat unintuitive, does make sense: all of Ryver’s
functionality can be accessed through one of many interfaces, all of which support chatting. As such, pyryver’s API
and this documentation often uses the word “chat” to refer to “users, teams and forums”. We also use the term “group
chat” to refer to both teams and forums, and you might see them referred to as “conferences” within the code since
that’s what Ryver appears to call them (especially within the WebSocket API).

We also use the term “logged-in” user to refer to whichever user who’s credentials were passed when creating the
Ryver session.

1

https://docs.aiohttp.org/en/latest/index.html
https://docs.aiohttp.org/en/latest/index.html

pyryver, Release 0.4.0

1.4 Quickstart

The core of the pyryver API is the pyryver.ryver.Ryver object, which represents a session with the Ryver
OData HTTP API.

Log in as a normal user
async with pyryver.Ryver("organization_name", "username", "password") as ryver:

pass

Log in with a token (for custom integrations)
async with pyryver.Ryver("organization_name", token="token") as ryver:

pass

As the snippet above demonstrates, you can log in as a normal user, or using a token for a custom integration.

Warning: While both normal users and custom integrations can perform most actions, the Realtime API currently
does not function when logging in with a token.

The Ryver object also stores (and can cache) some information about the Ryver organization, specifically lists of all
chats.

These can be loaded either with the type-specific pyryver.ryver.Ryver.load_users, pyryver.ryver.
Ryver.load_teams and pyryver.ryver.Ryver.load_forums or with pyryver.ryver.Ryver.
load_chats. There’s also pyryer.ryver.Ryver.load_missing_chats which won’t update already
loaded chats, which can be useful.

async with pyryver.Ryver("organization_name", "username", "password") as ryver:
await ryver.load_chats()

a_user = ryver.get_user(username="tylertian123")
a_forum = ryver.get_groupchat(display_name="Off-Topic")

Notice that since we grab all the chats once at the beginning, the specific chat lookup methods do not need to be
awaited, since they just search within pre-fetched data. Also notice that searching for users and group chats are in
separate methods; either a pyryver.objects.Forum or pyryver.objects.Team is returned depending on
what gets found.

Most of the functionality of pyryver exists within these chats, such as sending/checking messages and managing
topics. Additional, more specific methods (such as user and chat membership management) can also be found within
the different pyryver.objects.Chat subclasses. For example, the following code will scan the most recent 50
messages the logged-in user sent to tylertian123 and inform them of how many times an ellipsis occurred within
them.

async with pyryver.Ryver("organization_name", "username", "password") as ryver:
await ryver.load_chats()

a_user = ryver.get_user(username="tylertian123")
a_forum = ryver.get_groupchat(display_name="Off-Topic")

tally = 0
for message in await a_user.get_messages(50):

if "..." in message.get_body():
tally += 1

await a_user.send_message("There's been an ellipsis in here {} times".
→˓format(tally)) (continues on next page)

2 Chapter 1. Introduction

pyryver, Release 0.4.0

(continued from previous page)

For more information on how to use Chats and other Ryver data types, use the Ryver entities reference.

1.5 Realtime Quickstart

Building on the previous example, what if we want our terrible ellipsis counting bot to give live updates? We can use
the realtime API! The realtime interface is centred around the pyryver.ryver_ws.RyverWS object, which can
be obtained with Ryver.get_live_session(). Unlike the rest of the API, the realtime API is largely event
driven. For example:

Warning: The Realtime API currently does not work when logging in with a token.

async with pyryver.Ryver("organization_name", "username", "password") as ryver:
await ryver.load_chats()

a_user = ryver.get_user(username="tylertian123")

async with ryver.get_live_session() as session:
@session.on_chat
async def on_chat(msg: pyryver.WSChatMessageData):

pass

await session.run_forever()

There are a few things to notice here: firstly, that we can set event handlers with the various on_ decorators of the
pyryver.ryver_ws.RyverWS instance (you could also call these directly like any other decorator if you want to
declare these callbacks without having obtained the pyryver.ryver_ws.RyverWS instance yet), and secondly
that the realtime API starts as soon as it is created. pyryver.ryver_ws.RyverWS.run_forever() is a
helper that will run until something calls pyryver.ryver_ws.RyverWS.terminate(), which can be called
from within event callbacks safely.

The contents of the msg parameter passed to our callback is an object of type pyryver.ws_data.
WSChatMessageData that contains information about the message. In the chat message, there are two fields
our “bot” needs to care about: to_jid, which specifies which chat the message was posted in, and text, which
is the content of the message. from_jid refers to the message’s creator. Perhaps unintuitively, the to_jid field
should be referring to our user’s chat, since we’re looking at a private DM. For group chats, you’d expect the chat’s
JID here.

Note: Note that the callback will be called even if the message was sent by the current logged in user! Therefore,
even if you want to respond to messages from everyone, you should still make sure to check that from_jid is not
the bot user’s JID to avoid replying to your own messages.

Notice how we’re working with the chat’s JID here, which is a string, as opposed to the regular ID, which is an integer.
This is because the websocket system uses JIDs to refer to chats. Using this information, we can complete our terrible
little bot:

Note: The reason for the separate IDs is because the “ratatoskr” chat system appears to be built on XMPP, which uses
these “JabberID”s to refer to users and groups.

1.5. Realtime Quickstart 3

pyryver, Release 0.4.0

async with pyryver.Ryver("organization_name", "username", "password") as ryver:
await ryver.load_chats()

a_user = ryver.get_user(username="tylertian123")
me = ryver.get_user(username="username")

async with ryver.get_live_session() as session:
@session.on_chat
async def on_chat(msg: pyryver.WSChatMessageData):

did the message come from a_user and was sent via DM to us?
if msg.to_jid == me.get_jid() and msg.from_jid == a_user.get_jid():

did the message contain "..."?
if "..." in msg.text:

send a reply via the non-realtime system (slow)
await a_user.send_message("Hey, that ellipsis is _mean_!")
send a reply via the realtime system
await session.send_chat(a_user, "Hey, that ellipsis is _mean_!")

@session.on_connection_loss
async def on_connection_loss():

Make sure that the session is terminated and run_forever() returns on
→˓connection loss

await session.terminate()

await session.run_forever()

Note: Prior to v0.3.0, the msg parameter would have been a dict containing the raw JSON data of the message,
and you would access the fields directly by name through dict lookups. If you still wish to access the raw data of
the message, all message objects passed to callbacks have a raw_data attribute that contains the dict. In v0.3.2,
__getitem__() was implemented for message objects to directly access the raw_data dict, providing (partial)
backwards compatibility.

Here we also added a connection loss handler with the pyryver.ryver_ws.RyverWS.
on_connection_loss() decorator. The connection loss handler calls terminate(), which
causes run_forever() to return, allowing the program to exit on connection loss instead of
waiting forever. Alternatively, you could also make the session auto-reconnect by doing ryver.
get_live_session(auto_reconnect=True) when starting the session.

It’s important to note here that although the non-realtime API is perfectly accessible (and sometimes necessary) to use
in event callbacks, it’s often faster to use corresponding methods in the pyryver.ryver_ws.RyverWS instance
whenever possible. For some ephemeral actions like typing indicators and presence statuses, the realtime API is the
only way to accomplish certain tasks.

For more information on how to use the realtime interface, use the live session reference.

4 Chapter 1. Introduction

CHAPTER

TWO

API REFERENCE

This is the full reference of everything in pyryver.

Note: In all cases where a fully qualified name to something is used, such as pyryver.ryver.Ryver, any
submodule can be ignored, as they are all imported into the global pyryver scope.

2.1 Session

class pyryver.ryver.Ryver(org: Optional[str] = None, user: Optional[str] = None, password:
Optional[str] = None, token: Optional[str] = None, cache: Op-
tional[Type[pyryver.cache_storage.AbstractCacheStorage]] = None)

A Ryver session contains login credentials and organization information.

This is the starting point for any application using pyryver.

If the organization, it will be prompted using input(). If the username or password are not provided, and the
token is not provided, the username and password will be prompted.

If a token is specified, the username and password will be ignored.

The cache is used to load the chats data. If not provided, no caching will occur.

If a valid cache is provided, the chats data will be loaded in the constructor. Otherwise, it must be loaded through
load_forums(), load_teams() and load_users() or load_chats().

Parameters

• org – Your organization’s name (optional). (as seen in the URL)

• user – The username to authenticate with (optional).

• password – The password to authenticate with (optional).

• token – The custom integration token to authenticate with (optional).

• cache – The aforementioned cache (optional).

async with get_live_session(auto_reconnect: bool = False)→ pyryver.ryver_ws.RyverWS
Get a live session.

The session is not started unless start() is called or if it is used as a context manager.

Warning: Live sessions do not work when using a custom integration token.

5

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pyryver, Release 0.4.0

Parameters auto_reconnect – Whether to automatically reconnect on connection loss.

Returns The live websockets session.

get_chat(**kwargs)→ Optional[pyryver.objects.Chat]
Get a specific forum/team/user.

If no query parameters are supplied, more than one query parameters are supplied or forums/teams/users
are not loaded, raises ValueError.

Allowed query parameters are:

• id

• jid

Returns None if not found.

Raises ValueError – If not all chats are loaded, or zero or multiple query parameters are
specified.

Returns The chat, or None if not found.

get_user(**kwargs)→ Optional[pyryver.objects.User]
Get a specific user.

If no query parameters are supplied, more than one query parameters are supplied or users are not loaded,
raises ValueError.

Allowed query parameters are:

• id

• jid

• username

• name/display_name

• email

If using username or email to find the user, the search will be case-insensitive.

Returns None if not found.

Raises ValueError – If users are not loaded, or zero or multiple query parameters are speci-
fied.

Returns The user, or None of not found.

get_forum(**kwargs)→ Optional[pyryver.objects.Forum]
Get a specific forum.

If no query parameters are supplied, more than one query parameters are supplied or forums are not loaded,
raises ValueError.

Allowed query parameters are:

• id

• jid

• name

• nickname

6 Chapter 2. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

pyryver, Release 0.4.0

If using nickname to find the chat, the search will be case-insensitive.

Returns None if not found.

Raises ValueError – If forums are not loaded, or zero or multiple query parameters are spec-
ified.

Returns The chat, or None if not found.

get_team(**kwargs)→ Optional[pyryver.objects.Forum]
Get a specific team.

If no query parameters are supplied, more than one query parameters are supplied or teams are not loaded,
raises ValueError.

Allowed query parameters are:

• id

• jid

• name

• nickname

If using nickname to find the chat, the search will be case-insensitive.

Returns None if not found.

Raises ValueError – If teams are not loaded, or zero or multiple query parameters are speci-
fied.

Returns The chat, or None if not found.

get_groupchat(forums: bool = True, teams: bool = True, **kwargs) → Op-
tional[pyryver.objects.GroupChat]

Get a specific forum/team.

If no query parameters are supplied, more than one query parameters are supplied or the list to search is
not loaded, raises ValueError.

Allowed query parameters are:

• id

• jid

• name

• nickname

If using nickname to find the chat, the search will be case-insensitive.

Returns None if not found.

Changed in version 0.4.0: Added parameters forums and teams.

Forums Whether to search the list of forums.

Teams Whether to search the list of teams.

Raises ValueError – If the list to search is not loaded, or zero or multiple query parameters
are specified.

Returns The chat, or None if not found.

2.1. Session 7

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

pyryver, Release 0.4.0

await get_object(obj_type: Union[str, type], obj_id: Optional[int] = None, **kwargs) →
Union[Type[pyryver.objects.Object], List[Type[pyryver.objects.Object]]]

Get an object or multiple objects from Ryver with a type and optionally ID.

If extra keyword arguments are supplied, they are appended to the request as additional query parameters.
Possible values include top, skip, select, expand and more. The Ryver Developer Docs or OData
Specification contains documentation for some of these parameters. (Note: The link is to Odata 2.0 instead
of 4.0 because the 2.0 page seems to be much more readable.)

With this method, you can get objects by properties other than ID. The following example gets one or more
objects by display name:

Note that this will return an array, even if there is only 1 result
user = await ryver.get_object(pyryver.User, filter=f"displayName eq '{name}'")

Parameters

• obj_type – The type of the object to retrieve, either a string type or the actual object
type.

• obj_id – The object’s ID (optional).

Raises TypeError – If the object is not instantiable.

Returns The object or list of objects requested.

await get_info()→ Dict[str, Any]
Get organization and user info.

This method returns an assortment of info. It is currently the only way to get avatar URLs for
users/teams/forums etc. The results (returned mostly verbatim from the Ryver API) include:

• Basic user info - contains avatar URLs (“me”)

• User UI preferences (“prefs”)

• Ryver app info (“app”)

• Basic info about all users - contains avatar URLs (“users”)

• Basic info about all teams - contains avatar URLs (“teams”)

• Basic info about all forums - contains avatar URLs (“forums”)

• All available commands (“commands”)

• “messages” and “prefixes”, the purpose of which are currently unknown.

Returns The raw org and user info data.

async for notification in get_notifs(unread: bool = False, top: int = - 1, skip: int = 0)
→ AsyncIterator[pyryver.objects.Notification]

Get the notifications for the logged in user.

Parameters

• unread – If True, only return unread notifications.

• top – Maximum number of results.

• skip – Skip this many results.

Returns An async iterator for the user’s notifications.

8 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://api.ryver.com/ryvrest_api_examples.html
https://www.odata.org/documentation/odata-version-2-0/uri-conventions/
https://www.odata.org/documentation/odata-version-2-0/uri-conventions/
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyryver, Release 0.4.0

await mark_all_notifs_read()→ int
Marks all the user’s notifications as read.

Returns How many notifications were marked as read.

await mark_all_notifs_seen()→ int
Marks all the user’s notifications as seen.

Returns How many notifications were marked as seen.

await upload_file(filename: str, filedata: Any, filetype: Optional[str] = None) →
pyryver.objects.Storage

Upload a file to Ryver (for attaching to messages).

Note: Although this method uploads a file, the returned object is an instance of Storage, with type
Storage.TYPE_FILE. Use Storage.get_file() to obtain the actual File object.

Parameters

• filename – The filename to send to Ryver. (this will show up in the UI if attached as an
embed, for example)

• filedata – The file’s raw data, sent directly to aiohttp.FormData.
add_field().

• filetype – The MIME type of the file.

Returns The uploaded file, as a Storage object.

await create_link(name: str, link_url: str)→ pyryver.objects.Storage
Create a link on Ryver (for attaching to messages).

Note: The returned object is an instance of Storage with type Storage.TYPE_LINK.

Parameters

• name – The name of this link (its title).

• url – The URL of this link.

Returns The created link, as a Storage object.

await invite_user(email: str, role: str = 'member', username: Optional[str] = None, dis-
play_name: Optional[str] = None)→ pyryver.objects.User

Invite a new user to the organization.

An optional username and display name can be specified to pre-populate those values in the User Profile
page that the person is asked to fill out when they accept their invite.

Parameters

• email – The email of the user.

• role – The role of the user (member or guest), one of the User.USER_TYPE_ constants
(optional).

• username – The pre-populated username of this user (optional).

• display_name – The pre-populated display name of this user (optional).

2.1. Session 9

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.aiohttp.org/en/latest/client_reference.html#aiohttp.FormData.add_field
https://docs.aiohttp.org/en/latest/client_reference.html#aiohttp.FormData.add_field
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyryver, Release 0.4.0

Returns The invited user object.

await create_forum(name: str, nickname: Optional[str] = None, about: Optional[str] = None,
description: Optional[str] = None)→ pyryver.objects.Forum

Create a new open forum.

Parameters

• name – The name of this forum.

• nickname – The nickname of this forum (optional).

• about – The “about” (or “purpose” in the UI) of this forum (optional).

• description – The description of this forum (optional).

Returns The created forum object.

await create_team(name: str, nickname: Optional[str] = None, about: Optional[str] = None,
description: Optional[str] = None)→ pyryver.objects.Team

Create a new private team.

Parameters

• name – The name of this team.

• nickname – The nickname of this team (optional).

• about – The “about” (or “purpose” in the UI) of this team (optional).

• description – The description of this team (optional).

Returns The created team object.

await load_chats()→ None
Load the data of all users/teams/forums.

This refreshes the cached data if a cache is supplied.

await load_missing_chats()→ None
Load the data of all users/teams/forums if it does not exist.

Unlike load_chats(), this does not update the cache.

This method could send requests.

await load_users()→ None
Load the data of all users.

This refreshes the cached data if a cache is supplied.

await load_forums()→ None
Load the data of all forums.

This refreshes the cached data if a cache is supplied.

await load_teams()→ None
Load the data of all teams.

This refreshes the cached data if a cache is supplied.

await close()
Close this session.

10 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

pyryver, Release 0.4.0

2.2 Realtime Client

class pyryver.ryver_ws.RyverWS(ryver: Ryver, auto_reconnect: bool = False)
A live Ryver session using websockets.

You can construct this manually, although it is recommended to use Ryver.get_live_session().

Warning: This does not work when using a custom integration token to sign in.

Parameters

• ryver – The Ryver object this live session came from.

• auto_reconnect – Whether to automatically reconnect on a connection loss.

@on_chat(func: Callable[[pyryver.ws_data.WSChatMessageData], Awaitable])
Decorate a coroutine to be run when a new chat message is received.

This coroutine will be started as a task when a new chat message arrives. It should take a single argument
of type WSChatMessageData, which contains the data for the message.

@on_chat_deleted(func: Callable[[pyryver.ws_data.WSChatDeletedData], Awaitable])
Decorate a coroutine to be run when a chat message is deleted.

This coroutine will be started as a task when a chat message is deleted. It should take a single argument of
type WSChatDeletedData, which contains the data for the message.

@on_chat_updated(func: Callable[[pyryver.ws_data.WSChatUpdatedData], Awaitable])
Decorate a coroutine to be run when a chat message is updated (edited).

This coroutine will be started as a task when a chat message is updated. It should take a single argument
of type WSChatUpdatedData, which contains the data for the message.

@on_presence_changed(func: Callable[[pyryver.ws_data.WSPresenceChangedData], Await-
able])

Decorate a coroutine to be run when a user’s presence changed.

This coroutine will be started as a task when a user’s presence changes. It should take a single argument
of type WSPresenceChangedData, which contains the data for the presence change.

@on_user_typing(func: Callable[[pyryver.ws_data.WSUserTypingData], Awaitable])
Decorate a coroutine to be run when a user starts typing.

This coroutine will be started as a task when a user starts typing in a chat. It should take a single argument
of type WSUserTypingData, which contains the data for the user typing.

@on_connection_loss(func: Callable[], Awaitable])
Decorate a coroutine to be run when the connection is lost.

This coroutine will be started as a task when the connection is lost. It should take no arguments.

A connection loss is determined using a ping task. A ping is sent to Ryver once every 10 seconds, and
if the response takes over 5 seconds, this coroutine will be started. (These numbers roughly match those
used by the official web client.)

If auto-reconnect is enabled, no action needs to be taken. Otherwise, applications are suggested to
clean up and terminate, or try to reconnect using RyverWS.try_reconnect(). If RyverWS.
run_forever() is used, RyverWS.terminate() should be called to make it return, unless you
wish to reconnect.

2.2. Realtime Client 11

https://docs.python.org/3/library/functions.html#bool

pyryver, Release 0.4.0

A simple but typical implementation is shown below for applications that do not wish to recover:

async with ryver.get_live_session() as session:
@session.on_connection_loss
async def on_connection_loss():

await session.terminate()

@on_reconnect(func: Callable[], Awaitable])
Decorate a coroutine to be run when auto-reconnect succeeds.

This coroutine will be started as a task when auto-reconnect is successful. It should take no arguments. If
auto-reconnect is not enabled, this coroutine will never be started.

EVENT_REACTION_ADDED = '/api/reaction/added'
A reaction was added to a message (includes topics, tasks and replies/comments).

data field format:

• "type": The entity type of the thing that was reacted to.

• "id": The ID of the thing that was reacted to. String for chat messages, int for everything else.

• "userId": The ID of the user that reacted.

• "reaction": The name of the emoji that the user reacted with.

EVENT_REACTION_REMOVED = '/api/reaction/removed'
A reaction was removed from a message (includes topics, tasks and replies/comments).

data field format:

• "type": The entity type of the thing that was reacted to.

• "id": The ID of the thing that was reacted to. String for chat messages, int for everything else.

• "userId": The ID of the user that reacted.

• "reaction": The name of the emoji that the user reacted with.

EVENT_TOPIC_CHANGED = '/api/activityfeed/posts/changed'
A topic was changed (created, updated, deleted).

data field format:

• "created": A list of objects containing data for topics that were newly created.

• "updated": A list of objects containing data for topics that were updated.

• "deleted": A list of objects containing data for topics that were deleted.

EVENT_TASK_CHANGED = '/api/activityfeed/tasks/changed'
A task was changed (created, updated, deleted).

data field format:

• "created": A list of objects containing data for tasks that were newly created.

• "updated": A list of objects containing data for tasks that were updated.

• "deleted": A list of objects containing data for tasks that were deleted.

EVENT_ENTITY_CHANGED = '/api/entity/changed'
Some entity was changed (created, updated, deleted).

data field format:

• "change": The type of the change, could be “created”, “updated”, or “deleted”.

12 Chapter 2. API Reference

pyryver, Release 0.4.0

• "entity": The entity that was changed and some of its data after the change.

EVENT_ALL = ''
All unhandled events.

@on_event(event_type: str)
Decorate a coroutine to be run when an event occurs.

This coroutine will be started as a task when a new event arrives with the specified type. If the
event_type is None or an empty string, it will be called for all events that are unhandled.

It should take a single argument of type WSEventData, which contains the data for the event.

Parameters event_type – The event type to listen to, one of the constants in this class start-
ing with EVENT_ or RyverWS.EVENT_ALL to receive all otherwise unhandled messages.

MSG_TYPE_CHAT = 'chat'
A chat message was received.

MSG_TYPE_CHAT_UPDATED = 'chat_updated'
A chat message was updated.

MSG_TYPE_CHAT_DELETED = 'chat_deleted'
A chat message was deleted.

MSG_TYPE_PRESENCE_CHANGED = 'presence_change'
A user changed their presence.

MSG_TYPE_USER_TYPING = 'user_typing'
A user is typing in a chat.

MSG_TYPE_EVENT = 'event'
An event occurred.

MSG_TYPE_ALL = ''
All unhandled messages.

@on_msg_type(msg_type: str)
Decorate a coroutine to be run when for a type of websocket messages or for all unhandled messages.

This coroutine will be started as a task when a new websocket message arrives with the specified type. If
the msg_type is None or an empty string, it will be called for all messages that are otherwise unhandled.

It should take a single argument of type WSMessageData, which contains the data for the event.

Parameters msg_type – The message type to listen to, one of the constants in this class start-
ing with MSG_TYPE_ or RyverWS.MSG_TYPE_ALL to receive all otherwise unhandled
messages.

await send_chat(to_chat: Union[pyryver.objects.Chat, str], msg: str, timeout: float = 5.0)→ None
Send a chat message to a chat.

Parameters

• to_chat – The chat or the JID of the chat to send the message to.

• msg – The message contents.

• timeout – The timeout for waiting for an ack. If None, waits forever. By default waits
for 5s.

Raises

• asyncio.TimeoutError – On ack timeout.

• ClosedError – If connection closed or not yet opened.

2.2. Realtime Client 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.TimeoutError

pyryver, Release 0.4.0

async with typing(to_chat: pyryver.objects.Chat)→ pyryver.ryver_ws.RyverWSTyping
Get an async context manager that keeps sending a typing indicator to a chat.

Useful for wrapping long running operations to make sure the typing indicator is kept, like:

async with session.typing(chat):
print("do something silly")
await asyncio.sleep(4)
await session.send_chat(chat, "done") # or do it outside the with, doesn

→˓'t matter

Parameters to_chat – Where to send the typing status.

await send_typing(to_chat: Union[pyryver.objects.Chat, str], timeout: float = 5.0)→ None
Send a typing indicator to a chat.

The typing indicator automatically clears after a few seconds or when a message is sent. In private mes-
sages, you can also clear it with RyverWS.send_clear_typing() (does not work for group chats).

If you want to maintain the typing indicator for an extended operation, consider using RyverWS.
typing(), which returns an async context manager that can be used to maintain the typing indicator
for as long as desired.

Parameters

• to_chat – The chat or the JID of the chat to send the typing status to.

• timeout – The timeout for waiting for an ack. If None, waits forever. By default waits
for 5s.

Raises

• asyncio.TimeoutError – On ack timeout.

• ClosedError – If connection closed or not yet opened.

await send_clear_typing(to_chat: Union[pyryver.objects.Chat, str], timeout: float = 5.0) →
None

Clear the typing indicator for a chat.

Warning: For unknown reasons, this method only works in private messages.

Parameters

• to_chat – The chat or the JID of the chat to clear the typing status for.

• timeout – The timeout for waiting for an ack. If None, waits forever. By default waits
for 5s.

Raises

• asyncio.TimeoutError – On ack timeout.

• ClosedError – If connection closed or not yet opened.

PRESENCE_AVAILABLE = 'available'
“Available” presence (green).

PRESENCE_AWAY = 'away'
“Away” presence (yellow clock).

14 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.TimeoutError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.TimeoutError

pyryver, Release 0.4.0

PRESENCE_DO_NOT_DISTURB = 'dnd'
“Do Not Disturb” presence (red stop sign).

PRESENCE_OFFLINE = 'unavailable'
“Offline” presence (grey).

await send_presence_change(presence: str, timeout: float = 5.0)→ None
Send a presence change message.

The presence change is global and not restricted to a single chat.

Parameters

• presence – The new presence, one of the PRESENCE_ constants.

• timeout – The timeout for waiting for an ack. If None, waits forever. By default waits
for 5s.

Raises

• asyncio.TimeoutError – On ack timeout.

• ClosedError – If connection closed or not yet opened.

is_connected()→ bool
Get whether the websocket connection has been established.

Returns True if connected, False otherwise.

set_auto_reconnect(auto_reconnect: bool)→ None
Set whether the live session should attempt to auto-reconnect on connection loss.

Parameters auto_reconnect – Whether to automatically reconnect.

await run_forever()→ None
Run forever, or until RyverWS.terminate() is called.

Note: Since v0.4.0, this method will no longer return if RyverWS.close() is called. RyverWS.
terminate() must be called instead, which closes the session if it is unclosed.

Note: By default, this method will only return if a fatal connection loss occurs and auto-reconnect is not
enabled. If the connection loss is recoverable, this method will not return even if auto-reconnect is off.

You should use the RyverWS.on_connection_loss() decorator if you want to automatically close
the connection and return on connection loss. See its documentation for an example.

await terminate()→ None
Close the session and cause RyverWS.run_forever() to return.

This method will have no effect if called twice.

Note: If you use this class as an async with context manager, you don’t need to call the following two
methods.

await start(timeout: float = 5.0)→ None
Start the session, or reconnect after a connection loss.

2.2. Realtime Client 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.TimeoutError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

pyryver, Release 0.4.0

Note: If there is an existing connection, it will be closed.

Parameters timeout – The connection timeout in seconds. If None, waits forever. By default,
waits for 5 seconds.

await close(cancel_rx: bool = True, cancel_ping: bool = True)→ None
Close the session.

Any future operation after closing will result in a ClosedError being raised, unless the session is
reconnected using RyverWS.start() or RyverWS.try_reconnect().

When used as an async context manager, this method does not need to be called.

Note: Since v0.4.0, this method no longer causes RyverWS.run_forever() to return. Use
RyverWS.terminate() if you want to close the session and exit run_forever().

Parameters

• cancel_rx – Whether to cancel the rx task. For internal use only.

• cancel_ping – Whether to cancel the ping task. For internal use only.

class pyryver.ryver_ws.RyverWSTyping(rws: pyryver.ryver_ws.RyverWS, to:
pyryver.objects.Chat)

A context manager returned by RyverWS to keep sending a typing indicator.

You should not create this class yourself, rather use RyverWS.start_typing() instead.

start()→ None
Start sending the typing indicator.

await stop()→ None
Stop sending the typing indicator.

Note: This method will attempt to clear the typing indicator using RyverWS.
send_clear_typing(). However, it only works in private messages. Outside of private messages,
the typing indicator doesn’t clear immediately. It will clear by itself after about 3 seconds, or when a
message is sent.

class pyryver.ryver_ws.WSConnectionError
Bases: Exception

An exception raised by the real-time websockets session to indicate some kind of connection issue.

class pyryver.ryver_ws.ClosedError
Bases: pyryver.ryver_ws.WSConnectionError

An exception raised to indicate that the session has been closed.

class pyryver.ryver_ws.ConnectionLossError
Bases: pyryver.ryver_ws.WSConnectionError

An exception raised to indicate that the connection was lost in the middle of an operation.

16 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#Exception

pyryver, Release 0.4.0

2.2.1 Callback Task Data Types

class pyryver.ws_data.WSMessageData(ryver: Ryver, data: dict)
The data for any websocket message in pyryver.ryver_ws.RyverWS.

Variables

• ryver – The Ryver session that the data came from.

• ws_msg_type – The type of this websocket message. This can be one of the MSG_TYPE_
constants in pyryver.ryver_ws.RyverWS (except MSG_TYPE_ALL). However, do
note that the constants listed there do not cover all valid values of this field.

• raw_data – The raw websocket message data.

class pyryver.ws_data.WSChatMessageData(ryver: Ryver, data: dict)
Bases: pyryver.ws_data.WSMessageData

The data for a chat message in pyryver.ryver_ws.RyverWS.

Variables

• message_id – The ID of the message (a string).

• from_jid – The JID of the sender of this message.

• to_jid – The JID of the chat this message was sent to.

• text – The contents of the message.

• subtype – The subtype of the message. This will be one of the SUBTYPE_ constants in
ChatMessage.

• attachment – The file attached to this message, or None if there isn’t one.

• creator – The overridden message creator (see Creator), or None if there isn’t one.

class pyryver.ws_data.WSChatUpdatedData(ryver: Ryver, data: dict)
Bases: pyryver.ws_data.WSChatMessageData

The data for a chat message edited in pyryver.ryver_ws.RyverWS.

Variables

• message_id – The ID of the message (a string).

• from_jid – The JID of the user that edited the message.

• to_jid – The JID of the chat this message was sent to.

• text – The contents of the message after the edit. Note: In very rare circumstances, this
field is known to be None.

• subtype – The subtype of the message. This will be one of the SUBTYPE_ constants in
ChatMessage.

• attachment – The file attached to this message, or None if there isn’t one.

class pyryver.ws_data.WSChatDeletedData(ryver: Ryver, data: dict)
Bases: pyryver.ws_data.WSChatMessageData

The data for a chat message deleted in pyryver.ryver_ws.RyverWS.

Variables

• message_id – The ID of the message (a string).

• from_jid – The JID of the sender of this message.

2.2. Realtime Client 17

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pyryver, Release 0.4.0

• to_jid – The JID of the chat this message was sent to.

• text – The contents of the message that was deleted.

• subtype – The subtype of the message. This will be one of the SUBTYPE_ constants in
ChatMessage.

• attachment – The file attached to this message, or None if there isn’t one.

class pyryver.ws_data.WSPresenceChangedData(ryver: Ryver, data: dict)
Bases: pyryver.ws_data.WSMessageData

The data for a presence changed in pyryver.ryver_ws.RyverWS.

Variables

• presence – The new presence. This will be one of the PRESENCE_ constants in
RyverWS.

• from_jid – The JID of the user that changed their presence.

• client – The client the user is using.

• timestamp – An ISO 8601 timestamp of this event. You can use pyryver.util.
iso8601_to_datetime() to convert it into a datetime.

class pyryver.ws_data.WSUserTypingData(ryver: Ryver, data: dict)
Bases: pyryver.ws_data.WSMessageData

The data for a user typing in pyryver.ryver_ws.RyverWS.

Variables

• from_jid – The JID of the user that started typing.

• to_jid – The JID of the chat the user started typing in.

• state – The “state” of the typing. This is almost always “composing” (for typing in
progress), but it could also very rarely be “done”, for when the user has finished typing.

class pyryver.ws_data.WSEventData(ryver: Ryver, data: dict)
Bases: pyryver.ws_data.WSMessageData

The data for an event in pyryver.ryver_ws.RyverWS.

Variables

• event_type – The type of this event. This can be one of the EVENT_ constants in
pyryver.ryver_ws.RyverWS (except EVENT_ALL). However, do note that the con-
stants listed there do not cover all valid values of this field.

• event_data – The data of this event. This is a dictionary mapping strings to values of
any type. The format depends on the event type. The format of some events are documented
in the docs of the EVENT_ constants.

18 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pyryver, Release 0.4.0

2.3 Data Models

class pyryver.objects.Object(ryver: pyryver.ryver.Ryver, data: dict)
Base class for all Ryver objects.

Parameters

• ryver – The parent pyryver.pyryver.Ryver instance.

• data – The object’s data.

get_ryver()→ pyryver.ryver.Ryver
Get the Ryver session this object was retrieved from.

Returns The Ryver session associated with this object.

get_id()→ Union[int, str]
Get the ID of this object.

For a ChatMessage this is a string. For all other types, it is an int.

Returns The ID of this object.

get_entity_type()→ str
Get the entity type of this object.

Returns The entity type of this object, or if no entity of such type exists, <unknown>.

get_raw_data()→ dict
Get the raw data of this object.

The raw data is a dictionary directly obtained from parsing the JSON response.

Returns The raw data of this object.

get_api_url(*args, **kwargs)→ str
Uses Ryver.get_api_url() to get a URL for working with the Ryver API.

Warning: This method is intended for internal use only.

This is equivalent to calling Ryver.get_api_url(), but with the first two parameters set to self.
get_type() and self.get_id().

Returns The formatted URL for performing requests.

get_create_date()→ Optional[str]
Get the date this object was created as an ISO 8601 timestamp.

Note: This method does not work for all objects. For some objects, it will return None.

Tip: You can use pyryver.util.iso8601_to_datetime() to convert the timestamps returned
by this method into a datetime.

Returns The creation date of this object, or None if not supported.

2.3. Data Models 19

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyryver, Release 0.4.0

get_modify_date()→ Optional[str]
Get the date this object was last modified as an ISO 8601 timestamp.

Note: This method does not work for all objects. For some objects, it will return None.

Tip: You can use pyryver.util.iso8601_to_datetime() to convert the timestamps returned
by this method into a datetime.

Returns The modification date of this object, or None if not supported.

get_app_link()→ str
Get a link to this object that opens the app to this object.

Note: This method does not work for some types such as messages and topic/task replies. Additionally,
only types with Object.is_instantiable() true can be linked to. Calling this method on an object
of an invalid type will result in a TypeError.

Raises TypeError – If this object cannot be linked to.

Returns The in-app link for this object.

get_creator()→ Optional[pyryver.objects.Creator]
Get the Creator of this object.

Note that this is different from the author. Creators are used to override the display name and avatar of a
user. If the username and avatar were not overridden, this will return None.

Not all objects support this operation. If not supported, this will return None.

Returns The overridden creator of this message.

await get_deferred_field(field: str, field_type: str) → Union[Type[pyryver.objects.Object],
List[Type[pyryver.objects.Object]]]

Get the value of a field of this object that exists, but is not included (“__deferred” in the Ryver API).

Warning: This function is intended for internal use only.

This function will automatically infer from the result’s contents whether to return a single object or a list
of objects.

If the field cannot be retrieved, a ValueError will be raised.

Parameters

• field – The name of the field.

• field_type – The type of the field, must be a TYPE_ constant.

Returns The expanded value of this field as an object or a list of objects.

Raises ValueError – When the field cannot be expanded.

20 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

pyryver, Release 0.4.0

await get_create_user()→ Optional[pyryver.objects.User]
Get the user that created this object.

Note: This method does not work for all objects. If not supported, it will return None.

Returns The user that created this object, or None if not supported.

await get_modify_user()→ Optional[pyryver.objects.User]
Get the user that modified this object.

Note: This method does not work for all objects. If not supported, it will return None.

Returns The user that last modified this object, or None if not supported.

classmethod get_type()→ str
Get the type of this object.

Returns The type of this object.

classmethod is_instantiable()→ bool
Get whether this object type is instantiable.

Some types of objects cannot be instantiated, as they are actually not a part of the REST API, such as
Message, Chat, and other abstract types. If the type can be instantiated, this class method will return
True.

Note that even though a type may not be instantiable, its derived types could still be. For example, Chat
is not instantiable, but one of its derived types, User, is instantiable.

Returns Whether this type is instantiable.

classmethod await get_by_id(ryver: pyryver.ryver.Ryver, obj_id: int) →
Type[pyryver.objects.Object]

Retrieve an object of this type by ID.

Parameters

• ryver – The Ryver session to retrieve the object from.

• obj_id – The ID of the object to retrieve.

Raises TypeError – If this type is not instantiable.

Returns The object requested.

2.3.1 Chats

class pyryver.objects.Chat(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.Object

Any Ryver chat you can send messages to.

E.g. Teams, forums, user DMs, etc.

get_jid()→ str
Get the JID (JabberID) of this chat.

The JID is used in the websockets interface.

2.3. Data Models 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

pyryver, Release 0.4.0

Returns The JID of this chat.

abstractmethod get_name()→ str
Get the name of this chat.

Returns The name of this chat.

get_task_tags()→ List[pyryver.objects.TaskTag]
Get a list of task tags defined in this chat, as TaskTag objects.

Returns The defined task tags of this chat.

await set_task_tags(tags: Iterable[pyryver.objects.TaskTag])
Set the task tags defined in this chat.

Note: This will erase any existing tags.

This method also updates the task tags property of this object.

Parameters tags – The new tags as a list of ``TaskTag``s.

await send_message(message: str, creator: Optional[pyryver.objects.Creator] = None, attach-
ment: Union[Storage, File, None] = None, from_user: Optional[User] =
None)→ str

Send a message to this chat.

Specify a creator to override the username and profile of the message creator.

Tip: To attach a file to the message, use pyryver.ryver.Ryver.upload_file() to upload
the file you wish to attach. Alternatively, use pyryver.ryver.Ryver.create_link() for a link
attachment.

Warning: from_user must be set when using attachments with private messages. Otherwise,
a ValueError will be raised. It should be set to the user that is sending the message (the user
currently logged in).

It is not required to be set if the message is being sent to a forum/team.

Returns the ID of the chat message sent (not the message object itself). Note that message IDs are strings.

Parameters

• message – The message contents.

• creator – The overridden creator; optional, if unset uses the logged-in user’s profile.

• attachment – An attachment for this message, e.g. a file or a link (optional). Can be
either a Storage or a File object.

• from_user – The user that is sending this message (the user currently logged in); must
be set when using attachments in private messages (optional).

Raises ValueError – If a from_user is not provided for a private message attachment.

Returns The ID of the chat message that was sent.

22 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

pyryver, Release 0.4.0

async for ... in get_topics(archived: bool = False, top: int = - 1, skip: int = 0)→ AsyncIt-
erator[pyryver.objects.Topic]

Get all the topics in this chat.

Parameters

• archived – If True, only include archived topics in the results, otherwise, only include
non-archived topics.

• top – Maximum number of results; optional, if unspecified return all results.

• skip – Skip this many results.

Returns An async iterator for the topics of this chat.

await get_messages(count: int, skip: int = 0)→ List[pyryver.objects.ChatMessage]
Get a number of messages (most recent first) in this chat.

Parameters

• count – Maximum number of results.

• skip – The number of results to skip (optional).

Returns A list of messages.

await get_message(msg_id: str)→ pyryver.objects.ChatMessage
Get a single message from this chat by its ID.

Note: There is a chance that this method might result in a 404 Not Found for messages that were sent
recently (such as when using the realtime websocket API (pyryver.ryver_ws.RyverWS) to respond
to messages), as those messages have not been fully added to Ryver’s database yet.

You can use pyryver.util.retry_until_available() to wrap around this coroutine to get
around this.

Parameters msg_id – The ID of the chat message to get.

Returns The message object.

await get_messages_surrounding(msg_id: str, before: int = 0, after: int = 0) →
List[pyryver.objects.ChatMessage]

Get a range of messages (most recent last) before and after a chat message (given by ID).

Warning: Before and after cannot exceed 25 messages, otherwise a aiohttp.
ClientResponseError will be raised with the code 400 Bad Request.

Note: There is a chance that this method might result in a 404 Not Found for messages that were sent
recently (such as when using the realtime websocket API (pyryver.ryver_ws.RyverWS) to respond
to messages), as those messages have not been fully added to Ryver’s database yet.

You can use pyryver.util.retry_until_available() to wrap around this coroutine to get
around this.

The message with the given ID is also included as a part of the result.

Parameters

2.3. Data Models 23

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.aiohttp.org/en/latest/client_reference.html#aiohttp.ClientResponseError
https://docs.aiohttp.org/en/latest/client_reference.html#aiohttp.ClientResponseError

pyryver, Release 0.4.0

• msg_id – The ID of the message to use as the reference point.

• before – How many messages to retrieve before the specified one (optional).

• after – How many messages to retrieve after the specified one (optional).

Returns The messages requested, including the reference point message.

await get_task_board()→ Optional[pyryver.objects.TaskBoard]
Get the task board of this chat.

If tasks are not set up for this chat, this will return None.

This method works on users too. If used on a user, it will get their personal task board.

Returns The task board of this chat.

await delete_task_board()→ bool
Delete (or “reset”, according to the UI) the task board of this chat.

This method will not yield an error even if there is no task board set up. In those cases, it will simply return
false.

Returns Whether the task board was deleted.

await create_task_board(board_type: str, prefix: Optional[str] = None, categories:
Optional[List[Union[str, Tuple[str, str]]]] = None, uncatego-
rized_name: Optional[str] = None)→ pyryver.objects.TaskBoard

Create the task board for this chat if it has not yet been set up.

The board type should be one of the TaskBoard BOARD_TYPE_ constants; it specified whether this
task board should be a simple list or a board with categories.

You can also specify a list of category names and optional category types to pre-populate the task board
with categories. Each entry in the list should either be a string, which specifies the category name, or a
tuple of the name and the type of the category (a CATEGORY_TYPE_ constant). The default category type
is TaskCategory.CATEGORY_TYPE_OTHER.

An “uncategorized” category is always automatically added. Therefore, the type TaskCategory.
CATEGORY_TYPE_UNCATEGORIZED cannot be used in the list. You can, however, change the name of
the default “Uncategorized” category by specifying uncategorized_name.

Categories should not be specified if the type of the task board is TaskBoard.BOARD_TYPE_LIST.

Parameters

• board_type – The type of the task board.

• prefix – The task prefix (optional).

• categories – A list of categories and optional types to pre-populate the task board with
(see above) (optional).

• uncategorized_name – The name for the default “Uncategorized” category.

await delete_avatar()→ None
Delete the avatar of this chat.

await set_avatar(filename: str, filedata: Any, filetype: Optional[str] = None)→ None
Set the avatar of this chat.

A wrapper for Storage.make_avatar_of() and Ryver.upload_file().

Parameters

• filename – The filename of the image.

24 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

pyryver, Release 0.4.0

• filedata – The image’s raw data, sent directly to aiohttp.FormData.
add_field().

• filetype – The MIME type of the file.

class pyryver.objects.GroupChat(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.Chat

A Ryver team or forum.

get_name()→ str
Get the name of this chat.

Returns The name of this forum/team.

get_nickname()→ str
Get the nickname of this chat.

The nickname is a unique identifier that can be used to refer to the chat across Ryver.

Returns The nickname of this forum/team.

has_chat()→ bool
Get whether this forum/team has a chat tab.

Returns Whether there is a chat tab for this forum/team.

has_topics()→ bool
Get whether this forum/team has a topics tab.

Returns Whether there is a topics tab for this forum/team.

has_tasks()→ bool
Get whether this forum/team has a tasks tab.

Returns Whether there is a tasks tab for this forum/team.

does_announce_topics()→ bool
Get whether new topics are announced with a chat message.

Returns Whether new topics are announced with a chat message.

does_announce_tasks()→ bool
Get whether new tasks are announced with a chat message.

Returns Whether new tasks are announced with a chat message.

is_archived()→ bool
Get whether this team/forum is archived.

Returns Whether the team/forum is archived.

async for ... in get_members(top: int = - 1, skip: int = 0) → AsyncItera-
tor[pyryver.objects.GroupChatMember]

Get all the members of this chat.

Note: This gets the members as GroupChatMember objects, which contain additional info such as
whether the user is an admin of this chat.

To get the User object, use GroupChatMember.as_user().

Parameters

• top – Maximum number of results; optional, if unspecified return all results.

2.3. Data Models 25

https://docs.aiohttp.org/en/latest/client_reference.html#aiohttp.FormData.add_field
https://docs.aiohttp.org/en/latest/client_reference.html#aiohttp.FormData.add_field
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyryver, Release 0.4.0

• skip – Skip this many results.

Returns An async iterator for the members of this chat.

await get_member(user: Union[int, pyryver.objects.User]) → Op-
tional[pyryver.objects.GroupChatMember]

Get a member using either a User object or user ID.

Note: This gets the member as a GroupChatMember object, which contain additional info such as
whether the user is an admin of this chat.

Note: If an ID is provided, it should be the user ID of this member, not the groupchat member ID.

If the user is not found, this method will return None.

Parameters user – The user, or the ID of the user.

Returns The member, or None if not found.

await add_member(user: pyryver.objects.User, role: str = None)→ None
Add a member to this forum or team.

This is a wrapper for User.add_to_chat().

The role should be either GroupChatMember.ROLE_MEMBER or GroupChatMember.
ROLE_ADMIN . By default, new members are invited as normal members.

Parameters

• user – The user to add.

• role – The role to invite the user as (member or admin) (optional).

await remove_member(user: Union[int, pyryver.objects.User])→ None
Remove a user from this forum/team.

Either a user ID or a user object can be used.

If the user is not in this forum/team, this method will do nothing.

Parameters user – The user or the ID of the user to remove.

await create_topic(subject: str, body: str, stickied: bool = False, attachments:
Optional[Iterable[Union[Storage, File]]] = None, creator: Op-
tional[pyryver.objects.Creator] = None)→ pyryver.objects.Topic

Create a topic in this chat.

Returns the topic created.

Tip: To attach files to the topic, use pyryver.ryver.Ryver.upload_file() to upload the files
you wish to attach. Alternatively, use pyryver.ryver.Ryver.create_link() for link attach-
ments.

Changed in version 0.4.0: Switched the order of attachments and creator for consistency.

Parameters

• subject – The subject (or title) of the new topic.

• body – The contents of the new topic.

26 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pyryver, Release 0.4.0

• stickied – Whether to sticky (pin) this topic to the top of the list (optional, default
False).

• attachments – A number of attachments for this topic (optional).

• creator – The overridden creator; optional, if unset uses the logged-in user’s profile.

Returns The created topic.

await change_settings(chat: Optional[bool] = NO_CHANGE, topics: Optional[bool]
= NO_CHANGE, tasks: Optional[bool] = NO_CHANGE, an-
nounce_topics: Optional[bool] = NO_CHANGE, announce_tasks: Op-
tional[bool] = NO_CHANGE)→ None

Change the settings of this forum/team.

Note: The settings here contain only the settings in the “Settings” tab in the UI.

This method also updates these properties in this object.

If any parameters are unspecified, NO_CHANGE, or None, they will be left as-is.

Parameters

• chat – Whether there should be a chat tab for this forum/team (optional).

• topics – Whether there should be a topics tab for this forum/team (optional).

• tasks – Whether there should be a tasks tab for this form/team (optional).

• announce_topics – Whether new topics should be announced in the chat (optional).

• announce_tasks – Whether new tasks should be announced in the chat (optional).

await set_archived(archived: bool)→ None
Set whether this team/forum is archived.

Note: This method also updates the archived property of this object.

Parameters archived – Whether this team/forum should be archived.

await delete()→ None
Delete this forum/team.

As with most things, once it’s deleted, there’s no way to go back!

await join()→ None
Join this forum/team as the current logged in user.

await leave()→ None
Leave this forum/team as the current logged in user.

Note: This is not the same as selecting “Close and keep closed” in the UI. With this, the user will no
longer show up in the members list of the forum/team, whereas “Close and keep closed” will still keep the
user in the forum/team and only update the notification settings.

class pyryver.objects.Forum(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.GroupChat

A Ryver forum.

2.3. Data Models 27

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

pyryver, Release 0.4.0

class pyryver.objects.Team(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.GroupChat

A Ryver team.

2.3.2 Users

class pyryver.objects.User(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.Chat

A Ryver user.

Variables

• ROLE_USER – Regular organization member. Admins also have this role in addition to
ROLE_ADMIN.

• ROLE_ADMIN – An org admin.

• ROLE_GUEST – A guest.

• USER_TYPE_MEMBER – A member.

• USER_TYPE_GUEST – A guest.

ROLE_USER = 'ROLE_USER'

ROLE_ADMIN = 'ROLE_ADMIN'

ROLE_GUEST = 'ROLE_GUEST'

USER_TYPE_MEMBER = 'member'

USER_TYPE_GUEST = 'guest'

get_username()→ str
Get the username of this user.

Returns The username of this user.

get_display_name()→ str
Get the display name of this user.

Returns The display name of this user.

get_name()→ str
Get the display name of this user (same as the display name).

Returns The name of this user.

get_role()→ str
Get this user’s role in their profile.

Note: This is different from get_roles(). While this one gets the “Role” of the user from the profile,
get_roles() gets the user’s roles in the organization (user, guest, admin).

Returns The user’s “Role” as described in their profile.

get_about()→ str
Get this user’s About.

Returns The user’s “About” as described in their profile.

28 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyryver, Release 0.4.0

get_time_zone()→ str
Get this user’s Time Zone.

Returns The user’s time zone.

get_email_address()→ str
Get this user’s Email Address.

Returns The user’s email address.

get_activated()→ bool
Get whether this user’s account is activated.

Returns Whether this user’s account is activated (enabled).

get_roles()→ List[str]
Get this user’s role in the organization.

Note: This is different from get_role(). While this one gets the user’s roles in the organization (user,
guest, admin), get_role() gets the user’s role from their profile.

Returns The user’s roles in the organization.

get_user_type()→ str
Get the type of this user (member or guest).

The returned value will be either User.USER_TYPE_MEMBER or User.USER_TYPE_GUEST.

Returns The type of the user.

is_admin()→ bool
Get whether this user is an org admin.

Returns Whether the user is an org admin.

accepted_invite()→ bool
Get whether this user has accepted their user invite.

Returns Whether the user has accepted their invite.

await set_profile(display_name: Optional[str] = None, role: Optional[str] = None, about: Op-
tional[str] = None)→ None

Update this user’s profile.

If any of the arguments are None, they will not be changed.

Note: This also updates these properties in this object.

Parameters

• display_name – The user’s new display_name.

• role – The user’s new role, as described in get_role().

• about – The user’s new “about me” blurb.

await set_activated(activated: bool)→ None
Activate or deactivate the user. Requires admin.

2.3. Data Models 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

pyryver, Release 0.4.0

Note: This also updates these properties in this object.

await set_org_role(role: str)→ None
Set a user’s role in this organization, as described in get_roles().

This can be either ROLE_USER, ROLE_ADMIN or ROLE_GUEST.

Note: Although for org admins, get_roles() will return both ROLE_USER and ROLE_ADMIN, to
make someone an org admin you only need to pass ROLE_ADMIN into this method.

Note: This also updates these properties in this object.

await add_to_chat(chat: pyryver.objects.GroupChat, role: Optional[str] = None)→ None
Add a user to a forum/team.

The role should be either GroupChatMember.ROLE_MEMBER or GroupChatMember.
ROLE_ADMIN . By default, new members are invited as normal members.

Parameters

• chat – The forum/team to add to.

• role – The role to invite the user as (member or admin) (optional, defaults to member).

await create_topic(from_user: pyryver.objects.User, subject: str, body: str, stickied: bool =
False, attachments: Optional[Iterable[Union[Storage, File]]] = None, cre-
ator: Optional[pyryver.objects.Creator] = None)→ pyryver.objects.Topic

Create a topic in this user’s DMs.

Returns the topic created.

Tip: To attach files to the topic, use pyryver.ryver.Ryver.upload_file() to upload the files
you wish to attach. Alternatively, use pyryver.ryver.Ryver.create_link() for link attach-
ments.

Parameters

• from_user – The user that will create the topic; must be the same as the logged-in user.

• subject – The subject (or title) of the new topic.

• body – The contents of the new topic.

• stickied – Whether to sticky (pin) this topic to the top of the list (optional, default
False).

• attachments – A number of attachments for this topic (optional).

• creator – The overridden creator; optional, if unset uses the logged-in user’s profile.

Returns The created topic.

30 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pyryver, Release 0.4.0

2.3.3 Group Chat Members

class pyryver.objects.GroupChatMember(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.Object

A member in a forum or team.

This class can be used to tell whether a user is an admin of their forum/team.

Variables

• ROLE_MEMBER – Regular chat member. Note: This member could also be an org admin.

• ROLE_ADMIN – Forum/team admin.

ROLE_MEMBER = 'ROLE_TEAM_MEMBER'

ROLE_ADMIN = 'ROLE_TEAM_ADMIN'

get_role()→ str
Get the role of this member.

This will be one of the ROLE_ constants in this class.

Returns The role of this member.

await as_user()→ pyryver.objects.User
Get this member as a User object.

Returns The member as a User object.

get_name()→ str
Get the display name of this member.

is_admin()→ bool
Get whether this member is an admin of their forum/team.

Warning: This method does not check for org admins.

Returns Whether this user is a forum admin/team admin.

await remove()→ None
Remove this member from the forum/team.

await set_role(role: str)→ None
Set the role of this member (regular member or admin).

The role should be one of the ROLE_ constants in this class.

Note: This will also update the role stored in this object.

Parameters role – The new role of the member.

2.3. Data Models 31

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

pyryver, Release 0.4.0

2.3.4 Messages (Including Topics)

class pyryver.objects.Message(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.Object

Any generic Ryver message, with an author, body, and reactions.

get_body()→ str
Get the body of this message.

Note that this may be None in some circumstances.

Returns The body of this message.

await get_author()→ pyryver.objects.User
Get the author of this message, as a User object.

Returns The author of this message.

await react(emoji: str)→ None
React to this message with an emoji.

Note: This method does not update the reactions property of this object.

Parameters emoji – The string name of the reaction (e.g. “thumbsup”).

await unreact(emoji: str)→ None
Unreact with an emoji.

Note: This method does not update the reactions property of this object.

Parameters emoji – The string name of the reaction (e.g. “thumbsup”).

get_reactions()→ dict
Get the reactions on this message.

Returns a dict of {emoji: [users]}.

Returns A dict matching each emoji to the users that reacted with that emoji.

get_reaction_counts()→ dict
Count the number of reactions for each emoji on a message.

Returns a dict of {emoji: number_of_reacts}.

Returns A dict matching each emoji to the number of users that reacted with that emoji.

await delete()→ None
Delete this message.

class pyryver.objects.ChatMessage(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.Message

A message that was sent to a chat.

Note: Chat message are actually not a part of the Ryver REST APIs, since they aren’t standalone objects (a
chat is required to obtain one). As a result, they are a bit different from the other objects. Their IDs are strings

32 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

pyryver, Release 0.4.0

rather than ints, and they are not instantiable (and therefore cannot be obtained from Ryver.get_object()
or Object.get_by_id().)

Variables

• MSG_TYPE_PRIVATE – A private message between users.

• MSG_TYPE_GROUPCHAT – A message sent to a group chat (team or forum).

• SUBTYPE_CHAT_MESSAGE – A regular chat message sent by a user.

• SUBTYPE_TOPIC_ANNOUNCEMENT – An automatic chat message that announces the
creation of a new topic.

• SUBTYPE_TASK_ANNOUNCEMENT – An automatic chat message that announces the cre-
ation of a new task.

MSG_TYPE_PRIVATE = 'chat'

MSG_TYPE_GROUPCHAT = 'groupchat'

SUBTYPE_CHAT_MESSAGE = 'chat'

SUBTYPE_TOPIC_ANNOUNCEMENT = 'topic_share'

SUBTYPE_TASK_ANNOUNCEMENT = 'task_share'

get_msg_type()→ str
Get the type of this message (private message or group chat message).

The returned value will be one of the MSG_TYPE_ constants in this class.

Returns The type of this message.

get_subtype()→ str
Get the subtype of this message (regular message or topic/task announcement).

The returned value will be one of the SUBTYPE_ constants in this class.

Returns The subtype of this message.

get_time()→ str
Get the time this message was sent, as an ISO 8601 timestamp.

Tip: You can use pyryver.util.iso8601_to_datetime() to convert the timestamps returned
by this method into a datetime.

Returns The time this message was sent, as an ISO 8601 timestamp.

get_author_id()→ int
Get the ID of the author of this message.

Returns The author ID of the message.

get_chat_type()→ str
Gets the type of chat that this message was sent to, as a string.

Returns The type of the chat this message was sent to.

2.3. Data Models 33

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pyryver, Release 0.4.0

get_chat_id()→ int
Get the id of the chat that this message was sent to, as an integer.

Note that this is different from get_chat() as the id is stored in the message data and is good for most
API purposes while get_chat() returns an entire Chat object, which might not be necessary depending
on what you’re trying to do.

Returns The ID of the chat this message was sent to.

get_attached_file()→ Optional[pyryver.objects.File]
Get the file attached to this message, if there is one.

Note: Files obtained from this only have a limited amount of information, including the ID, name, URL,
size and type. Attempting to get any other info will result in a KeyError. To obtain the full file info, use
Ryver.get_object() with TYPE_FILE and the ID.

Note: Even if the attachment was a link and not a file, it will still be returned as a File object, as there
seems to be no way of telling the type of the attachment just from the info provided in the message object.

Returns None otherwise.

Returns The attached file or link.

get_announced_topic_id()→ Optional[int]
Get the ID of the topic this message is announcing.

This is only a valid operation for messages that announce a new topic. In other words, ChatMessage.
get_subtype() must return ChatMessage.SUBTYPE_TOPIC_ANNOUNCEMENT. If this message
does not announce a topic, this method will return None.

Returns The ID of the topic that is announced by this message, or None.

get_announced_task_id()→ Optional[int]
Get the ID of the task this message is announcing.

This is only a valid operation for messages that announce a new task. In other words, ChatMessage.
get_subtype() must return ChatMessage.SUBTYPE_TASK_ANNOUNCEMENT. If this message
does not announce a topic, this method will return None.

Returns The ID of the task that is announced by this message, or None.

await get_author()→ pyryver.objects.User
Get the author of this message, as a User object.

Tip: For chat messages, you can get the author ID without sending any requests, with ChatMessage.
get_author_id().

Returns The author of this message.

await get_chat()→ pyryver.objects.Chat
Get the chat that this message was sent to, as a Chat object.

Returns The chat this message was sent to.

await react(emoji: str)→ None
React to this task with an emoji.

34 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

pyryver, Release 0.4.0

Note: This method does not update the reactions property of this object.

Parameters emoji – The string name of the reaction (e.g. “thumbsup”).

await unreact(emoji: str)→ None
Unreact with an emoji.

Note: This method does not update the reactions property of this object.

Parameters emoji – The string name of the reaction (e.g. “thumbsup”).

await delete()→ None
Deletes the message.

await edit(message: Optional[str] = NO_CHANGE, creator: Optional[pyryver.objects.Creator] =
NO_CHANGE, attachment: Union[Storage, File, None] = NO_CHANGE, from_user:
Optional[User] = None)→ None

Edit this message.

Note: You can only edit a message if it was sent by you (even if you are an admin). Attempting to edit
another user’s message will result in a aiohttp.ClientResponseError.

This also updates these properties in this object.

Tip: To attach a file to the message, use pyryver.ryver.Ryver.upload_file() to upload
the file you wish to attach. Alternatively, use pyryver.ryver.Ryver.create_link() for a link
attachment.

Warning: from_user must be set when using attachments with private messages. Otherwise,
a ValueError will be raised. It should be set to the user that is sending the message (the user
currently logged in).

It is not required to be set if the message is being sent to a forum/team.

If any parameters are unspecified or NO_CHANGE, they will be left as-is. Passing None for parameters for
which None is not a valid value will also result in the value being unchanged.

Parameters

• message – The new message contents (optional).

• creator – The new creator (optional).

• attachment – An attachment for this message, e.g. a file or a link (optional). Can be
either a Storage or a File object.

• from_user – The user that is sending this message (the user currently logged in); must
be set when using attachments in private messages (optional).

Raises ValueError – If a from_user is not provided for a private message attachment.

2.3. Data Models 35

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.aiohttp.org/en/latest/client_reference.html#aiohttp.ClientResponseError
https://docs.python.org/3/library/exceptions.html#ValueError

pyryver, Release 0.4.0

class pyryver.objects.Topic(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.PostedMessage

A Ryver topic in a chat.

get_subject()→ str
Get the subject of this topic.

Returns The subject of this topic.

is_stickied()→ bool
Return whether this topic is stickied (pinned) to the top of the list.

Returns Whether this topic is stickied.

is_archived()→ bool
Return whether this topic is archived.

Returns Whether this topic is archived.

await archive(archived: bool = True)→ None
Archive or un-archive this topic.

Parameters archived – Whether the topic should be archived.

await unarchive()→ None
Un-archive this topic.

This is the same as calling Topic.archive() with False.

await reply(message: str, creator: Optional[pyryver.objects.Creator] = None, attachments: Op-
tional[Iterable[Union[Storage, File]]] = None)→ pyryver.objects.TopicReply

Reply to the topic.

Note: For unknown reasons, overriding the creator does not seem to work for this method.

Tip: To attach files to the reply, use pyryver.ryver.Ryver.upload_file() to upload the files
you wish to attach. Alternatively, use pyryver.ryver.Ryver.create_link() for link attach-
ments.

Parameters

• message – The reply content

• creator – The overridden creator (optional). Does not work.

• attachments – A number of attachments for this reply (optional).

Returns The created reply.

async for ... in get_replies(top: int = - 1, skip: int = 0) → AsyncItera-
tor[pyryver.objects.TopicReply]

Get all the replies to this topic.

Parameters

• top – Maximum number of results; optional, if unspecified return all results.

• skip – Skip this many results (optional).

Returns An async iterator for the replies of this topic.

36 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyryver, Release 0.4.0

await edit(subject: Optional[str] = NO_CHANGE, body: Optional[str] = NO_CHANGE, stick-
ied: Optional[bool] = NO_CHANGE, creator: Optional[pyryver.objects.Creator]
= NO_CHANGE, attachments: Optional[Iterable[Union[Storage, File]]] =
NO_CHANGE)→ None

Edit this topic.

Note: Unlike editing topic replies and chat messages, admins have permission to edit any topic regardless
of whether they created it.

The file attachments (if specified) will replace all existing attachments.

Additionally, this method also updates these properties in this object.

If any parameters are unspecified or NO_CHANGE, they will be left as-is. Passing None for parameters for
which None is not a valid value will also result in the value being unchanged.

Parameters

• subject – The subject (or title) of the topic (optional).

• body – The contents of the topic (optional).

• stickied – Whether to sticky (pin) this topic to the top of the list (optional).

• creator – The overridden creator (optional).

• attachments – A number of attachments for this topic (optional).

class pyryver.objects.TopicReply(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.PostedComment

A reply on a topic.

await get_topic()→ pyryver.objects.Topic
Get the topic this reply was sent to.

Returns The topic associated with this reply.

2.3.5 Tasks

class pyryver.objects.TaskBoard(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.Object

A Ryver task board.

Variables

• BOARD_TYPE_BOARD – A task board with categories.

• BOARD_TYPE_LIST – A task list (i.e. a task board without categories).

BOARD_TYPE_BOARD = 'board'

BOARD_TYPE_LIST = 'list'

get_name()→ str
Get the name of this task board.

This will be the same as the name of the forum/team/user the task board is associated with.

Returns The name of the task board.

2.3. Data Models 37

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

pyryver, Release 0.4.0

get_board_type()→ str
Get the type of this task board.

Returns one of the BOARD_TYPE_ constants in this class.

BOARD_TYPE_BOARD is a task board with categories, while BOARD_TYPE_LIST is a task list without
categories.

Not to be confused with Object.get_type().

Returns The type of this task board.

get_prefix()→ str
Get the prefix for this task board.

The prefix can be used to reference tasks across Ryver using the #PREFIX-ID syntax.

If a task board does not have task IDs set up, this will return None.

Returns The task prefix for this task board.

async for ... in get_categories(top: int = - 1, skip: int = 0) → AsyncItera-
tor[pyryver.objects.TaskCategory]

Get all the categories in this task board.

Even if this task board has no categories (a list), this method will still return a single category, “Uncatego-
rized”.

Parameters

• top – Maximum number of results; optional, if unspecified return all results.

• skip – Skip this many results (optional).

Returns An async iterator for the categories in this task board.

await create_category(name: str, done: bool = False)→ pyryver.objects.TaskCategory
Create a new task category in this task board.

Parameters

• name – The name of this category.

• done – Whether tasks moved to this category should be marked as done.

Returns The created category.

async for ... in get_tasks(archived: Optional[bool] = None, top: int = - 1, skip: int = 0)
→ AsyncIterator[pyryver.objects.Task]

Get all the tasks in this task board.

If archived is unspecified or None, all tasks will be retrieved. If archived is either True or False,
only tasks that are archived or unarchived are retrieved, respectively.

This will not retrieve sub-tasks (checklist items).

Parameters

• archived – If True or False, only retrieve tasks that are archived or unarchived; if None,
retrieve all tasks (optional).

• top – Maximum number of results; optional, if unspecified return all results.

• skip – Skip this many results (optional).

Returns An async iterator for the tasks in this task board.

38 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyryver, Release 0.4.0

await create_task(subject: str, body: str = '', category: Optional[TaskCategory] = None, as-
signees: Optional[Iterable[pyryver.objects.User]] = None, due_date: Op-
tional[str] = None, tags: Union[List[str], List[pyryver.objects.TaskTag],
None] = None, checklist: Optional[Iterable[str]] = None, attachments: Op-
tional[Iterable[Union[Storage, File]]] = None)→ pyryver.objects.Task

Create a task in this task board.

If the category is None, this task will be put in the “Uncategorized” category. For list type task boards, the
category can be left as None.

Tip: To attach files to the task, use pyryver.ryver.Ryver.upload_file() to upload the files
you wish to attach. Alternatively, use pyryver.ryver.Ryver.create_link() for link attach-
ments.

Tip: You can use pyryver.util.datetime_to_iso8601() to turn datetime objects into times-
tamps that Ryver will accept.

Note that timezone info must be present in the timestamp. Otherwise, this will result in a 400 Bad Request.

Parameters

• subject – The subject, or title of the task.

• body – The body, or description of the task (optional).

• category – The category of the task; if None, the task will be uncategorized (optional).

• assignees – A list of users to assign for this task (optional).

• due_date – The due date, as an ISO 8601 formatted string with a timezone offset
(optional).

• tags – A list of tags of this task (optional). Can either be a list of strings or a list of
``TaskTag``s.

• checklist – A list of strings which are used as the item names for the checklist of this
task (optional).

• attachments – A list of attachments for this task (optional).

Returns The created task.

await get_chat()→ pyryver.objects.Chat
Get the chat this task board is in.

If this task board is a public task board in a forum or team, a GroupChat object will be returned. If this
task board is a personal (user) task board, a User object will be returned.

Note: API Detail: Although public task boards can be in either a forum or a team, GroupChat objects
returned by this method will always be instances of Team, even if the task board exists in a forum. There
seems to be no way of determining whether the returned chat is actually a forum or a team. However, as
both forums/teams have the exact same methods, this detail shouldn’t matter.

Returns The forum/team/user this task board is in.

2.3. Data Models 39

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyryver, Release 0.4.0

class pyryver.objects.TaskCategory(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.Object

A category in a task board.

Variables

• CATEGORY_TYPE_UNCATEGORIZED – The “Uncategorized” category, created by the
system (present in all task boards regardless of whether it is shown).

• CATEGORY_TYPE_DONE – A user-created category in which all tasks are marked as done.

• CATEGORY_TYPE_OTHER – Other categories (user-created and not marked as done).

CATEGORY_TYPE_UNCATEGORIZED = 'uncategorized'

CATEGORY_TYPE_DONE = 'done'

CATEGORY_TYPE_OTHER = 'user'

get_name()→ str
Get the name of this category.

Returns The name of this category.

get_position()→ int
Get the position of this category in this task board.

Positions are numbered from left to right.

Note: The first user-created category that is shown in the UI has a position of 1. This is because the
“Uncategorized” category, which is present in all task boards, always has a position of 0, even when it’s
not shown (when there are no uncategorized tasks).

Returns The position of this category.

get_category_type()→ str
Get the type of this task category.

Returns one of the CATEGORY_TYPE_ constants in this class.

Returns The type of this category.

await get_task_board()→ pyryver.objects.TaskBoard
Get the task board that contains this category.

Returns The task board.

await edit(name: Optional[str] = NO_CHANGE, done: Optional[bool] = NO_CHANGE)→ None
Edit this category.

Note: This method also updates these properties in this object.

Warning: done should never be set for the “Uncategorized” category, as its type cannot be modified.
If set, a ValueError will be raised.

If any parameters are unspecified or NO_CHANGE, they will be left as-is. Passing None for parameters for
which None is not a valid value will also result in the value being unchanged.

40 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

pyryver, Release 0.4.0

Parameters

• name – The name of this category (optional).

• done – Whether tasks moved to this category should be marked as done (optional).

Raises ValueError – If attempting to modify the type of the “Uncategorized” category.

await delete(move_to: Optional[TaskCategory] = None)→ None
Delete this category.

If move_to is specified, the tasks that are in this category will be moved into the specified category and
not archived. Otherwise, the tasks will be archived.

Parameters move_to – Another category to move the tasks in this category to (optional).

await archive(completed_only: bool = False)→ None
Archive either all or only completed tasks in this category.

Deprecated since version 0.4.0: Use TaskCategory.archive_tasks() instead. The functionality
is unchanged but the name is less misleading.

Note: This archives the tasks in this category, not the category itself.

Parameters completed_only – Whether to only archive completed tasks (optional).

await archive_tasks(completed_only: bool = False)→ None
Archive either all or only completed tasks in this category.

Parameters completed_only – Whether to only archive completed tasks (optional).

await move_position(position: int)→ None
Move this category’s display position in the UI.

Note: This also updates the position property of this object.

The first user-created category that is shown in the UI has a position of 1. This is because the “Uncatego-
rized” category, which is present in all task boards, always has a position of 0, even when it’s not shown
(when there are no uncategorized tasks).

Therefore, no user-created task category can ever be moved to position 0, and the “Uncategorized” category
should never be moved.

Parameters position – The new display position.

await move_tasks(category: pyryver.objects.TaskCategory, completed_only: bool = False) →
None

Move either all or only completed tasks in this category to another category.

Parameters

• category – The category to move to.

• completed_only – Whether to only move completed tasks (optional).

async for ... in get_tasks(archived: Optional[bool] = None, top: int = - 1, skip: int = 0)
→ AsyncIterator[pyryver.objects.Task]

Get all the tasks in this category.

2.3. Data Models 41

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyryver, Release 0.4.0

If archived is unspecified or None, all tasks will be retrieved. If archived is either True or False,
only tasks that are archived or unarchived are retrieved, respectively.

This will not retrieve sub-tasks (checklist items).

Parameters

• archived – If True or False, only retrieve tasks that are archived or unarchived; if None,
retrieve all tasks (optional).

• top – Maximum number of results; optional, if unspecified return all results.

• skip – Skip this many results (optional).

Returns An async iterator for the tasks in this category.

class pyryver.objects.Task(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.PostedMessage

A Ryver task.

is_archived()→ bool
Get whether this task has been archived.

Returns Whether this task has been archived.

get_subject()→ str
Get the subject (title) of this task.

Returns The subject of this task.

get_due_date()→ Optional[str]
Get the due date as an ISO 8601 timestamp.

If there is no due date, this method will return None.

Tip: You can use pyryver.util.iso8601_to_datetime() to convert the timestamps returned
by this method into a datetime.

Returns The due date of this task.

get_complete_date()→ Optional[str]
Get the complete date as an ISO 8601 timestamp.

If the task has not been completed, this method will return None.

Tip: You can use pyryver.util.iso8601_to_datetime() to convert the timestamps returned
by this method into a datetime.

Returns The completion date of this task.

is_completed()→ bool
Get whether this task has been completed.

Returns Whether this task has been completed.

get_short_repr()→ Optional[str]
Get the short representation of this task.

42 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pyryver, Release 0.4.0

This is can be used to reference this task across Ryver. It has the form PREFIX-ID, and is also unique
across the entire organization.

If the task board does not have prefixes set up, this will return None.

Returns The unique short representation of this task.

get_position()→ int
Get the position of this task in its category or the task list.

The first task has a position of 0.

Returns The position of this task in its category.

get_comments_count()→ int
Get how many comments this task has received.

Returns The number of comments this task has received.

get_attachments_count()→ int
Get how many attachments this task has.

Returns The number of attachments this task has.

get_tags()→ List[str]
Get all the tags of this task.

Note: The tags are returned as a list of strings, not a list of ``TaskTag``s.

Returns All the tags of this task, as strings.

await get_task_board()→ pyryver.objects.TaskBoard
Get the task board this task is in.

Returns The task board containing this task.

await get_task_category()→ pyryver.objects.TaskCategory
Get the category this task is in.

Returns The category containing this task.

await get_assignees()→ List[pyryver.objects.User]
Get the assignees of this task.

Returns The assignees of this task,.

await set_complete_date(time: Optional[str] = '')→ None
Set the complete date of this task, which also marks whether this task is complete.

An optional completion time can be specified in the form of an ISO 8601 timestamp with a timezone offset.
If not specified or an empty string, the current time will be used.

Tip: You can use pyryver.util.datetime_to_iso8601() to turn datetime objects into times-
tamps that Ryver will accept.

Note that timezone info must be present in the timestamp. Otherwise, this will result in a 400 Bad Request.

If None is used as the time, in addition to clearing the complete date, this task will also be un-completed.

Note: This also updates the complete date property in this object.

2.3. Data Models 43

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

pyryver, Release 0.4.0

If a time of None is given, this task will be marked as uncomplete.

Parameters time – The completion time (optional).

await set_due_date(time: Optional[str])
Set the due date of this task.

The time must be specified as an ISO 8601 timestamp with a timezone offset. It can also be None, in which
case there will be no due date.

Tip: You can use pyryver.util.datetime_to_iso8601() to turn datetime objects into times-
tamps that Ryver will accept.

Note that timezone info must be present in the timestamp. Otherwise, this will result in a 400 Bad Request.

Note: This also updates the due date property in this object.

Parameters time – The new due date.

await complete()→ None
Mark this task as complete.

await uncomplete()→ None
Mark this task as uncomplete.

await archive(archived: bool = True)→ None
Archive or un-archive this task.

Parameters archived – Whether the task should be archived.

await unarchive()→ None
Un-archive this task.

This is the same as calling Task.archive() with False.

await move(category: pyryver.objects.TaskCategory, position: int)→ None
Move this task to another category or to a different position in the same category.

Note: This also updates the position property of this object.

async for ... in get_checklist(top: int = - 1, skip: int = 0) → AsyncItera-
tor[pyryver.objects.Task]

Get the checklist items of this task (subtasks).

If this task has no checklist, an empty list will be returned.

The checklist items are Task objects; complete or uncomplete those objects to change the checklist status.

Parameters

• top – Maximum number of results; optional, if unspecified return all results.

• skip – Skip this many results (optional).

Returns An async iterator for the tasks in the checklist of this task.

44 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyryver, Release 0.4.0

await get_parent()→ Optional[pyryver.objects.Task]
Get the parent task of this sub-task (checklist item).

This only works if this task is an item in another task’s checklist. Otherwise, this will return None.

Returns The parent of this sub-task (checklist item), or None if this task is not a sub-task.

await add_to_checklist(items: Iterable[str])→ None
Add items to this task’s checklist.

Parameters items – The names of the items to add.

await set_checklist(items: Iterable[Task])→ None
Set the contents of this task’s checklist.

This will overwrite existing checklist items.

Note: This method should be used for deleting checklist items only. It cannot be used to add new items
as the tasks would have to be created first. To add new items, use Task.add_to_checklist().

Parameters items – The items in the checklist.

await edit(subject: Optional[str] = NO_CHANGE, body: Optional[str] = NO_CHANGE,
category: Optional[TaskCategory] = NO_CHANGE, assignees: Op-
tional[Iterable[pyryver.objects.User]] = NO_CHANGE, due_date: Optional[str]
= NO_CHANGE, tags: Union[List[str], List[pyryver.objects.TaskTag], None]
= NO_CHANGE, attachments: Optional[Iterable[Union[Storage, File]]] =
NO_CHANGE)→ None

Edit this task.

Note: Admins can edit any task regardless of whether they created it.

The file attachments (if specified) will replace all existing attachments.

Additionally, this method also updates these properties in this object.

Note: While a value of None for the category in TaskBoard.create_task() will result in the task
being placed in the “Uncategorized” category, None is not a valid value for the category in this method,
and if used will result in the category being unmodified.

This method does not support editing the checklist. To edit the checklist, use Task.
get_checklist(), Task.set_checklist() and Task.add_to_checklist().

If any parameters are unspecified or NO_CHANGE, they will be left as-is. Passing None for parameters for
which None is not a valid value will also result in the value being unchanged.

Tip: To attach files to the task, use pyryver.ryver.Ryver.upload_file() to upload the files
you wish to attach. Alternatively, use pyryver.ryver.Ryver.create_link() for link attach-
ments.

Tip: You can use pyryver.util.datetime_to_iso8601() to turn datetime objects into times-
tamps that Ryver will accept.

2.3. Data Models 45

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

pyryver, Release 0.4.0

Note that timezone info must be present in the timestamp. Otherwise, this will result in a 400 Bad Request.

Parameters

• subject – The subject, or title of the task (optional).

• body – The body, or description of the task (optional).

• category – The category of the task; if None, the task will be uncategorized (optional).

• assignees – A list of users to assign for this task (optional).

• due_date – The due date, as an ISO 8601 formatted string with a timezone offset
(optional).

• tags – A list of tags of this task (optional). Can either be a list of strings or a list of
``TaskTag``s.

• attachments – A list of attachments for this task (optional).

async for ... in get_comments(top: int = - 1, skip: int = 0) → AsyncItera-
tor[pyryver.objects.TaskComment]

Get all the comments on this task.

Parameters

• top – Maximum number of results; optional, if unspecified return all results.

• skip – Skip this many results (optional).

Returns An async iterator for the comments of this task.

await comment(message: str, attachments: Optional[Iterable[Union[Storage, File]]] = None, cre-
ator: Optional[pyryver.objects.Creator] = None)→ pyryver.objects.TaskComment

Comment on this task.

Note: For unknown reasons, overriding the creator does not seem to work for this method.

Tip: To attach files to the comment, use pyryver.ryver.Ryver.upload_file() to upload
the files you wish to attach. Alternatively, use pyryver.ryver.Ryver.create_link() for link
attachments.

Changed in version 0.4.0: Switched the order of attachments and creator for consistency.

Parameters

• message – The comment’s contents.

• creator – The overridden creator (optional). Does not work.

• attachments – A number of attachments for this comment (optional).

Returns The created comment.

46 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pyryver, Release 0.4.0

2.3.6 Files

class pyryver.objects.Storage(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.Object

Generic storage (message attachments), e.g. files and links.

Variables

• STORAGE_TYPE_FILE – An uploaded file.

• STORAGE_TYPE_LINK – A link.

STORAGE_TYPE_FILE = 'file'

STORAGE_TYPE_LINK = 'link'

get_storage_type()→ str
Get the type of this storage object.

Returns one of the STORAGE_TYPE_ constants in this class.

Not to be confused with Object.get_type().

Returns The type of this storage object.

get_name()→ str
Get the name of this storage object.

Returns The name of this storage object.

get_size()→ str
Get the size of the object stored.

Returns The size of the thing stored.

get_content_id()→ int
Get the ID of the contents of this storage object.

If a link is stored, then this will return the same value as get_id(). If a file is stored, then this will return
the ID of the file instead.

Returns The ID of the contents of this storage object.

get_content_MIME_type()→ str
Get the MIME type of the content.

For links, this will be “application/octet-stream”.

Returns The MIME type of the contents of this storage object.

get_file()→ pyryver.objects.File
Get the file stored.

Warning: This method will raise a KeyError if the type of this storage is not TYPE_FILE!

Returns The file stored.

get_content_url()→ str
Get the URL of the contents.

If a link is stored, then this will be the URL of the link. If a file is stored, then this will be the URL of the
file contents.

2.3. Data Models 47

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyryver, Release 0.4.0

Returns The content’s URL.

await delete()→ None
Delete this storage object and the file it contains if there is one.

await make_avatar_of(chat: pyryver.objects.Chat)→ None
Make this image an avatar of a chat.

Parameters chat – The chat to change the avatar for.

Raises ValueError – If the contents of this storage object is not a file.

class pyryver.objects.File(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.Object

An uploaded file.

get_title()→ str
Get the title of this file.

Returns The title of this file.

get_name()→ str
Get the name of this file.

Returns The name of this file.

get_size()→ int
Get the size of this file in bytes.

Returns The size of the file in bytes.

get_url()→ str
Get the URL of this file.

Returns The URL of the file.

get_MIME_type()→ str
Get the MIME type of this file.

Returns The MIME type of the file.

request_data()→ aiohttp.client_reqrep.ClientResponse
Get the file data.

Returns an aiohttp request response to the file URL.

Returns An aiohttp.ClientResponse object representing a request response for the file
contents.

await download_data()→ bytes
Download the file data.

Returns The downloaded file data, as raw bytes.

await delete()→ None
Delete this file.

48 Chapter 2. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.aiohttp.org/en/latest/client_reference.html#aiohttp.ClientResponse
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None

pyryver, Release 0.4.0

2.3.7 Notifications

class pyryver.objects.Notification(ryver: pyryver.ryver.Ryver, data: dict)
Bases: pyryver.objects.Object

A Ryver user notification.

Variables

• PREDICATE_MENTION – The user was directly mentioned with an @mention.

• PREDICATE_GROUP_MENTION – The user was mentioned through @team or @here.

• PREDICATE_COMMENT – A topic was commented on.

• PREDICATE_TASK_COMPLETED – A task was completed.

PREDICATE_MENTION = 'chat_mention'

PREDICATE_GROUP_MENTION = 'group_mention'

PREDICATE_COMMENT = 'commented_on'

PREDICATE_TASK_COMPLETED = 'completed'

get_predicate()→ str
Get the “predicate”, or type, of this notification.

This usually returns one of the PREDICATE_ constants in this class. Note that the list currently provided
is not exhaustive; this method may return a value that isn’t one of the constants.

Returns The predicate of this notification.

get_subject_entity_type()→ str
Get the entity type of the “subject” of this notification.

The exact nature of this field is not yet known, but it seems to be the user that did the action which caused
this notification.

Returns The entity type of this notification’s subject.

get_subject_id()→ int
Get the ID of the “subject” of this notification.

The exact nature of this field is not yet known, but it seems to be the user that did the action which caused
this notification.

Returns The ID of this notification’s subject.

get_subjects()→ List[dict]
Get the “subjects” of this notification.

The exact nature of this field is not yet known, but it seems to be the user that did the action which caused
this notification. It is also unknown why this is an array, as it seems to only ever contain one element.

Returns The subjects of this notification.

get_object_entity_type()→ str
Get entity type of the “object” of this notification.

The exact nature of this field is not yet known, but it seems to be the target of an @mention for mentions,
the topic for topic comments, or the task for task activities.

Returns The entity type of the object of this notification.

2.3. Data Models 49

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

pyryver, Release 0.4.0

get_object_id()→ int
Get the ID of the “object” of this notification.

The exact nature of this field is not yet known, but it seems to be the target of an @mention for mentions,
the topic for topic comments, or the task for task activities.

Returns The ID of the object of this notification.

get_object()→ dict
Get the “object” of this notification.

The exact nature of this field is not yet known, but it seems to be the target of an @mention for mentions,
the topic for topic comments, or the task for task activities.

Returns The object of this notification.

get_via_entity_type()→ str
Get the entity type of the “via” of this notification.

The exact nature of this field is not yet known, but it seems to contain information about whatever caused
this notification. For example, the chat message of an @mention, the topic reply for a reply, etc. For task
completions, there is NO via.

Returns The entity type of the via of this notification.

get_via_id()→ int
Get the ID of the “via” of this notification.

The exact nature of this field is not yet known, but it seems to contain information about whatever caused
this notification. For example, the chat message of an @mention, the topic reply for a reply, etc. For task
completions, there is NO via.

Returns The ID of the via of this notification.

get_via()→ dict
Get the “via” of this notification.

The exact nature of this field is not yet known, but it seems to contain information about whatever caused
this notification. For example, the chat message of an @mention, the topic reply for a reply, etc. For task
completions, there is NO via.

Returns The via of this notification.

get_new()→ bool
Get whether this notification is new.

Returns Whether this notification is new.

get_unread()→ bool
Get whether this notification is unread.

Returns Whether this notification is unread.

await set_status(unread: bool, new: bool)→ None
Set the read/unread and seen/unseen (new) status of this notification.

Note: This also updates these properties in this object.

50 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

pyryver, Release 0.4.0

2.3.8 Creators

class pyryver.objects.Creator(name: str, avatar: str = '')
A message creator, with a name and an avatar.

This can be used to override the sender’s display name and avatar.

Parameters

• name – The overridden display name

• avatar – The overridden avatar (a url to an image)

name

avatar

to_dict()→ dict
Convert this Creator object to a dictionary to be used in a request.

Warning: This method is intended for internal use only.

Returns The dict representation of this object.

2.4 Utilities

2.4.1 Cache Data Storage

Cache storages are used by Ryver to cache organization data locally.

In large organizations with lots of data, caching can be used to make the program load some organization data locally
instead of fetching them from Ryver. This can significantly improve program startup times.

Currently, the lists of all users, forums, and teams can be cached.

See also:

The Ryver class

class pyryver.cache_storage.AbstractCacheStorage
Bases: abc.ABC

An abstract class defining the requirements for cache storages.

A cache storage is used by the Ryver class to cache chats data to improve performance.

abstractmethod load(ryver: Ryver, obj_type: str)→ List[pyryver.objects.Object]
Load all saved objects of a specific type.

If no objects were saved, this method returns an empty list.

Parameters

• ryver – The Ryver session to associate the objects with.

• obj_type – The type of the objects to load.

Returns A list of saved objects of that type.

abstractmethod save(obj_type: str, data: Iterable[pyryver.objects.Object])→ None
Save all objects of a specific type.

2.4. Utilities 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

pyryver, Release 0.4.0

Parameters

• obj_type – The type of the objects to save.

• data – The objects to save.

class pyryver.cache_storage.FileCacheStorage(root_dir: str = '.', prefix: str = '')
Bases: pyryver.cache_storage.AbstractCacheStorage

A cache storage implementation using files.

load(ryver: Ryver, obj_type: str)→ List[pyryver.objects.Object]
Load all saved objects of a specific type.

If no objects were saved, this method returns an empty list.

Parameters

• ryver – The Ryver session to associate the objects with.

• obj_type – The type of the objects to load.

Returns A list of saved objects of that type.

save(obj_type: str, data: Iterable[pyryver.objects.Object])→ None
Save all objects of a specific type.

Parameters

• obj_type – The type of the objects to save.

• data – The objects to save.

2.4.2 API Helpers

This module contains various contants and utilities for both internal and external use.

pyryver.util.NO_CHANGE = NO_CHANGE
This constant is used in the various edit() methods. It’s used to indicate that there should be no change to the
value of a field, in the cases where None is a valid value.

pyryver.util.get_type_from_entity(entity_type: str)→ Optional[str]
Gets the object type from the entity type.

Note that it doesn’t actually return a class, just the string.

Warning: This function is intended for internal use only.

Parameters entity_type – The entity type of the object.

Returns The regular type of the object, or None if an invalid type.

await pyryver.util.retry_until_available(action: Callable[[. . .], Awaitable[T]], *args,
timeout: Optional[float] = None, retry_delay:
float = 0.5, **kwargs)→ T

Repeatedly tries to do some action (usually getting a resource) until the resource becomes available or a timeout
elapses.

This function will try to run the given coroutine once every retry_delay seconds. If it results in a 404, the
function tries again. Otherwise, the exception is raised.

If it times out, an asyncio.TimeoutError will be raised.

52 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.TimeoutError

pyryver, Release 0.4.0

args and kwargs are passed to the coroutine.

For example, this snippet will try to get a message from a chat by ID with a timeout of 5 seconds, retrying after
1 second if a 404 occurs:

message = await pyryver.retry_until_available(chat.get_message, message_id,
→˓timeout=5.0, retry_delay=1.0)

Note: Do not “call” the coro first and pass a future to this function; instead, pass a reference to the coro directly,
as seen in the example. This is done because a single future cannot be awaited multiple times, so a new one is
created each time the function retries.

Parameters

• action – The coroutine to run.

• timeout – The timeout in seconds, or None for no timeout (optional).

• retry_delay – The duration in seconds to wait before trying again (optional).

Returns The return value of the coroutine.

pyryver.util.iso8601_to_datetime(timestamp: str)→ datetime.datetime
Convert an ISO 8601 timestamp as returned by the Ryver API into a datetime.

Warning: This function does not handle all valid ISO 8601 timestamps; it only tries to handle the ones
returned by the Ryver API. It uses the simple format string "%Y-%m-%dT%H:%M:%S%z" to parse the
timestamp.

Therefore, this function should not be used for parsing any ISO timestamp; to do that, consider using
dateutil.parser, or some alternative method.

Parameters timestamp – The ISO 8601 timestamp.

pyryver.util.datetime_to_iso8601(timestamp: datetime.datetime)→ str
Convert a datetime into an ISO 8601 timestamp as used by the Ryver API.

Parameters timestamp – The datetime to convert.

pyryver.objects.get_obj_by_field(objs: Iterable[pyryver.objects.Object], field: str,
value: Any, case_sensitive: str = True) → Op-
tional[pyryver.objects.Object]

Gets an object from a list of objects by a field.

For example, this function can find a chat with a specific nickname in a list of chats.

Parameters

• objs – List of objects to search in.

• field – The field’s name (usually a constant beginning with FIELD_ in pyryver.util)
within the object’s JSON data.

• value – The value to look for.

• case_sensitive – Whether the search should be case-sensitive. Can be useful for fields
such as username or nickname, which are case-insensitive. Defaults to True. If the field
value is not a string, it will be ignored.

2.4. Utilities 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyryver, Release 0.4.0

Returns The object with the matching field, or None if not found.

2.4.3 Entity Types

pyryver.util.TYPE_USER
Corresponds to pyryver.objects.User.

pyryver.util.TYPE_FORUM
Corresponds to pyryver.objects.Forum.

pyryver.util.TYPE_TEAM
Corresponds to pyryver.objects.Team.

pyryver.util.TYPE_GROUPCHAT_MEMBER
Corresponds to pyryver.objects.GroupChatMember.

pyryver.util.TYPE_TOPIC
Corresponds to pyryver.objects.Topic.

pyryver.util.TYPE_TOPIC_REPLY
Corresponds to pyryver.objects.TopicReply .

pyryver.util.TYPE_NOTIFICATION
Corresponds to pyryver.objects.Notification.

pyryver.util.TYPE_STORAGE
Corresponds to pyryver.objects.Storage.

pyryver.util.TYPE_FILE
Corresponds to pyryver.objects.File.

2.4.4 Common Field Names

pyryver.util.FIELD_USERNAME

pyryver.util.FIELD_EMAIL_ADDR

pyryver.util.FIELD_DISPLAY_NAME
The object’s display name (friendly name)

pyryver.util.FIELD_NAME

pyryver.util.FIELD_NICKNAME

pyryver.util.FIELD_ID
The object’s ID, sometimes an int, sometimes a str depending on the object type.

pyryver.util.FIELD_JID
The object’s JID, or JabberID. Used in the live socket interface for referring to chats.

54 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PYTHON MODULE INDEX

p
pyryver.cache_storage, 51
pyryver.util, 52

55

pyryver, Release 0.4.0

56 Python Module Index

INDEX

A
AbstractCacheStorage (class in

pyryver.cache_storage), 51
accepted_invite() (pyryver.objects.User method),

29
add_member() (pyryver.objects.GroupChat method),

26
add_to_chat() (pyryver.objects.User method), 30
add_to_checklist() (pyryver.objects.Task

method), 45
archive() (pyryver.objects.Task method), 44
archive() (pyryver.objects.TaskCategory method), 41
archive() (pyryver.objects.Topic method), 36
archive_tasks() (pyryver.objects.TaskCategory

method), 41
as_user() (pyryver.objects.GroupChatMember

method), 31
avatar (pyryver.objects.Creator attribute), 51

B
BOARD_TYPE_BOARD (pyryver.objects.TaskBoard at-

tribute), 37
BOARD_TYPE_LIST (pyryver.objects.TaskBoard

attribute), 37

C
CATEGORY_TYPE_DONE

(pyryver.objects.TaskCategory attribute),
40

CATEGORY_TYPE_OTHER
(pyryver.objects.TaskCategory attribute),
40

CATEGORY_TYPE_UNCATEGORIZED
(pyryver.objects.TaskCategory attribute),
40

change_settings() (pyryver.objects.GroupChat
method), 27

Chat (class in pyryver.objects), 21
ChatMessage (class in pyryver.objects), 32
close() (pyryver.ryver.Ryver method), 10
close() (pyryver.ryver_ws.RyverWS method), 16
ClosedError (class in pyryver.ryver_ws), 16

comment() (pyryver.objects.Task method), 46
complete() (pyryver.objects.Task method), 44
ConnectionLossError (class in pyryver.ryver_ws),

16
create_category() (pyryver.objects.TaskBoard

method), 38
create_forum() (pyryver.ryver.Ryver method), 10
create_link() (pyryver.ryver.Ryver method), 9
create_task() (pyryver.objects.TaskBoard method),

38
create_task_board() (pyryver.objects.Chat

method), 24
create_team() (pyryver.ryver.Ryver method), 10
create_topic() (pyryver.objects.GroupChat

method), 26
create_topic() (pyryver.objects.User method), 30
Creator (class in pyryver.objects), 51

D
datetime_to_iso8601() (in module pyryver.util),

53
delete() (pyryver.objects.ChatMessage method), 35
delete() (pyryver.objects.File method), 48
delete() (pyryver.objects.GroupChat method), 27
delete() (pyryver.objects.Message method), 32
delete() (pyryver.objects.Storage method), 48
delete() (pyryver.objects.TaskCategory method), 41
delete_avatar() (pyryver.objects.Chat method), 24
delete_task_board() (pyryver.objects.Chat

method), 24
does_announce_tasks()

(pyryver.objects.GroupChat method), 25
does_announce_topics()

(pyryver.objects.GroupChat method), 25
download_data() (pyryver.objects.File method), 48

E
edit() (pyryver.objects.ChatMessage method), 35
edit() (pyryver.objects.Task method), 45
edit() (pyryver.objects.TaskCategory method), 40
edit() (pyryver.objects.Topic method), 36
EVENT_ALL (pyryver.ryver_ws.RyverWS attribute), 13

57

pyryver, Release 0.4.0

EVENT_ENTITY_CHANGED
(pyryver.ryver_ws.RyverWS attribute), 12

EVENT_REACTION_ADDED
(pyryver.ryver_ws.RyverWS attribute), 12

EVENT_REACTION_REMOVED
(pyryver.ryver_ws.RyverWS attribute), 12

EVENT_TASK_CHANGED (pyryver.ryver_ws.RyverWS
attribute), 12

EVENT_TOPIC_CHANGED (pyryver.ryver_ws.RyverWS
attribute), 12

F
FIELD_DISPLAY_NAME (in module pyryver.util), 54
FIELD_EMAIL_ADDR (in module pyryver.util), 54
FIELD_ID (in module pyryver.util), 54
FIELD_JID (in module pyryver.util), 54
FIELD_NAME (in module pyryver.util), 54
FIELD_NICKNAME (in module pyryver.util), 54
FIELD_USERNAME (in module pyryver.util), 54
File (class in pyryver.objects), 48
FileCacheStorage (class in pyryver.cache_storage),

52
Forum (class in pyryver.objects), 27

G
get_about() (pyryver.objects.User method), 28
get_activated() (pyryver.objects.User method), 29
get_announced_task_id()

(pyryver.objects.ChatMessage method), 34
get_announced_topic_id()

(pyryver.objects.ChatMessage method), 34
get_api_url() (pyryver.objects.Object method), 19
get_app_link() (pyryver.objects.Object method), 20
get_assignees() (pyryver.objects.Task method), 43
get_attached_file()

(pyryver.objects.ChatMessage method), 34
get_attachments_count() (pyryver.objects.Task

method), 43
get_author() (pyryver.objects.ChatMessage

method), 34
get_author() (pyryver.objects.Message method), 32
get_author_id() (pyryver.objects.ChatMessage

method), 33
get_board_type() (pyryver.objects.TaskBoard

method), 37
get_body() (pyryver.objects.Message method), 32
get_by_id() (pyryver.objects.Object class method),

21
get_categories() (pyryver.objects.TaskBoard

method), 38
get_category_type()

(pyryver.objects.TaskCategory method), 40
get_chat() (pyryver.objects.ChatMessage method),

34

get_chat() (pyryver.objects.TaskBoard method), 39
get_chat() (pyryver.ryver.Ryver method), 6
get_chat_id() (pyryver.objects.ChatMessage

method), 33
get_chat_type() (pyryver.objects.ChatMessage

method), 33
get_checklist() (pyryver.objects.Task method), 44
get_comments() (pyryver.objects.Task method), 46
get_comments_count() (pyryver.objects.Task

method), 43
get_complete_date() (pyryver.objects.Task

method), 42
get_content_id() (pyryver.objects.Storage

method), 47
get_content_MIME_type()

(pyryver.objects.Storage method), 47
get_content_url() (pyryver.objects.Storage

method), 47
get_create_date() (pyryver.objects.Object

method), 19
get_create_user() (pyryver.objects.Object

method), 20
get_creator() (pyryver.objects.Object method), 20
get_deferred_field() (pyryver.objects.Object

method), 20
get_display_name() (pyryver.objects.User

method), 28
get_due_date() (pyryver.objects.Task method), 42
get_email_address() (pyryver.objects.User

method), 29
get_entity_type() (pyryver.objects.Object

method), 19
get_file() (pyryver.objects.Storage method), 47
get_forum() (pyryver.ryver.Ryver method), 6
get_groupchat() (pyryver.ryver.Ryver method), 7
get_id() (pyryver.objects.Object method), 19
get_info() (pyryver.ryver.Ryver method), 8
get_jid() (pyryver.objects.Chat method), 21
get_live_session() (pyryver.ryver.Ryver method),

5
get_member() (pyryver.objects.GroupChat method),

26
get_members() (pyryver.objects.GroupChat method),

25
get_message() (pyryver.objects.Chat method), 23
get_messages() (pyryver.objects.Chat method), 23
get_messages_surrounding()

(pyryver.objects.Chat method), 23
get_MIME_type() (pyryver.objects.File method), 48
get_modify_date() (pyryver.objects.Object

method), 19
get_modify_user() (pyryver.objects.Object

method), 21
get_msg_type() (pyryver.objects.ChatMessage

58 Index

pyryver, Release 0.4.0

method), 33
get_name() (pyryver.objects.Chat method), 22
get_name() (pyryver.objects.File method), 48
get_name() (pyryver.objects.GroupChat method), 25
get_name() (pyryver.objects.GroupChatMember

method), 31
get_name() (pyryver.objects.Storage method), 47
get_name() (pyryver.objects.TaskBoard method), 37
get_name() (pyryver.objects.TaskCategory method),

40
get_name() (pyryver.objects.User method), 28
get_new() (pyryver.objects.Notification method), 50
get_nickname() (pyryver.objects.GroupChat

method), 25
get_notifs() (pyryver.ryver.Ryver method), 8
get_obj_by_field() (in module pyryver.objects),

53
get_object() (pyryver.objects.Notification method),

50
get_object() (pyryver.ryver.Ryver method), 7
get_object_entity_type()

(pyryver.objects.Notification method), 49
get_object_id() (pyryver.objects.Notification

method), 49
get_parent() (pyryver.objects.Task method), 44
get_position() (pyryver.objects.Task method), 43
get_position() (pyryver.objects.TaskCategory

method), 40
get_predicate() (pyryver.objects.Notification

method), 49
get_prefix() (pyryver.objects.TaskBoard method),

38
get_raw_data() (pyryver.objects.Object method), 19
get_reaction_counts() (pyryver.objects.Message

method), 32
get_reactions() (pyryver.objects.Message

method), 32
get_replies() (pyryver.objects.Topic method), 36
get_role() (pyryver.objects.GroupChatMember

method), 31
get_role() (pyryver.objects.User method), 28
get_roles() (pyryver.objects.User method), 29
get_ryver() (pyryver.objects.Object method), 19
get_short_repr() (pyryver.objects.Task method),

42
get_size() (pyryver.objects.File method), 48
get_size() (pyryver.objects.Storage method), 47
get_storage_type() (pyryver.objects.Storage

method), 47
get_subject() (pyryver.objects.Task method), 42
get_subject() (pyryver.objects.Topic method), 36
get_subject_entity_type()

(pyryver.objects.Notification method), 49
get_subject_id() (pyryver.objects.Notification

method), 49
get_subjects() (pyryver.objects.Notification

method), 49
get_subtype() (pyryver.objects.ChatMessage

method), 33
get_tags() (pyryver.objects.Task method), 43
get_task_board() (pyryver.objects.Chat method),

24
get_task_board() (pyryver.objects.Task method),

43
get_task_board() (pyryver.objects.TaskCategory

method), 40
get_task_category() (pyryver.objects.Task

method), 43
get_task_tags() (pyryver.objects.Chat method), 22
get_tasks() (pyryver.objects.TaskBoard method), 38
get_tasks() (pyryver.objects.TaskCategory method),

41
get_team() (pyryver.ryver.Ryver method), 7
get_time() (pyryver.objects.ChatMessage method),

33
get_time_zone() (pyryver.objects.User method), 28
get_title() (pyryver.objects.File method), 48
get_topic() (pyryver.objects.TopicReply method), 37
get_topics() (pyryver.objects.Chat method), 22
get_type() (pyryver.objects.Object class method), 21
get_type_from_entity() (in module pyryver.util),

52
get_unread() (pyryver.objects.Notification method),

50
get_url() (pyryver.objects.File method), 48
get_user() (pyryver.ryver.Ryver method), 6
get_user_type() (pyryver.objects.User method), 29
get_username() (pyryver.objects.User method), 28
get_via() (pyryver.objects.Notification method), 50
get_via_entity_type()

(pyryver.objects.Notification method), 50
get_via_id() (pyryver.objects.Notification method),

50
GroupChat (class in pyryver.objects), 25
GroupChatMember (class in pyryver.objects), 31

H
has_chat() (pyryver.objects.GroupChat method), 25
has_tasks() (pyryver.objects.GroupChat method), 25
has_topics() (pyryver.objects.GroupChat method),

25

I
invite_user() (pyryver.ryver.Ryver method), 9
is_admin() (pyryver.objects.GroupChatMember

method), 31
is_admin() (pyryver.objects.User method), 29

Index 59

pyryver, Release 0.4.0

is_archived() (pyryver.objects.GroupChat method),
25

is_archived() (pyryver.objects.Task method), 42
is_archived() (pyryver.objects.Topic method), 36
is_completed() (pyryver.objects.Task method), 42
is_connected() (pyryver.ryver_ws.RyverWS

method), 15
is_instantiable() (pyryver.objects.Object class

method), 21
is_stickied() (pyryver.objects.Topic method), 36
iso8601_to_datetime() (in module pyryver.util),

53

J
join() (pyryver.objects.GroupChat method), 27

L
leave() (pyryver.objects.GroupChat method), 27
load() (pyryver.cache_storage.AbstractCacheStorage

method), 51
load() (pyryver.cache_storage.FileCacheStorage

method), 52
load_chats() (pyryver.ryver.Ryver method), 10
load_forums() (pyryver.ryver.Ryver method), 10
load_missing_chats() (pyryver.ryver.Ryver

method), 10
load_teams() (pyryver.ryver.Ryver method), 10
load_users() (pyryver.ryver.Ryver method), 10

M
make_avatar_of() (pyryver.objects.Storage

method), 48
mark_all_notifs_read() (pyryver.ryver.Ryver

method), 8
mark_all_notifs_seen() (pyryver.ryver.Ryver

method), 9
Message (class in pyryver.objects), 32
module

pyryver.cache_storage, 51
pyryver.util, 52

move() (pyryver.objects.Task method), 44
move_position() (pyryver.objects.TaskCategory

method), 41
move_tasks() (pyryver.objects.TaskCategory

method), 41
MSG_TYPE_ALL (pyryver.ryver_ws.RyverWS attribute),

13
MSG_TYPE_CHAT (pyryver.ryver_ws.RyverWS at-

tribute), 13
MSG_TYPE_CHAT_DELETED

(pyryver.ryver_ws.RyverWS attribute), 13
MSG_TYPE_CHAT_UPDATED

(pyryver.ryver_ws.RyverWS attribute), 13

MSG_TYPE_EVENT (pyryver.ryver_ws.RyverWS at-
tribute), 13

MSG_TYPE_GROUPCHAT
(pyryver.objects.ChatMessage attribute),
33

MSG_TYPE_PRESENCE_CHANGED
(pyryver.ryver_ws.RyverWS attribute), 13

MSG_TYPE_PRIVATE (pyryver.objects.ChatMessage
attribute), 33

MSG_TYPE_USER_TYPING
(pyryver.ryver_ws.RyverWS attribute), 13

N
name (pyryver.objects.Creator attribute), 51
NO_CHANGE (in module pyryver.util), 52
Notification (class in pyryver.objects), 49

O
Object (class in pyryver.objects), 19
on_chat() (pyryver.ryver_ws.RyverWS method), 11
on_chat_deleted() (pyryver.ryver_ws.RyverWS

method), 11
on_chat_updated() (pyryver.ryver_ws.RyverWS

method), 11
on_connection_loss()

(pyryver.ryver_ws.RyverWS method), 11
on_event() (pyryver.ryver_ws.RyverWS method), 13
on_msg_type() (pyryver.ryver_ws.RyverWS method),

13
on_presence_changed()

(pyryver.ryver_ws.RyverWS method), 11
on_reconnect() (pyryver.ryver_ws.RyverWS

method), 12
on_user_typing() (pyryver.ryver_ws.RyverWS

method), 11

P
PREDICATE_COMMENT (pyryver.objects.Notification

attribute), 49
PREDICATE_GROUP_MENTION

(pyryver.objects.Notification attribute), 49
PREDICATE_MENTION (pyryver.objects.Notification

attribute), 49
PREDICATE_TASK_COMPLETED

(pyryver.objects.Notification attribute), 49
PRESENCE_AVAILABLE (pyryver.ryver_ws.RyverWS

attribute), 14
PRESENCE_AWAY (pyryver.ryver_ws.RyverWS at-

tribute), 14
PRESENCE_DO_NOT_DISTURB

(pyryver.ryver_ws.RyverWS attribute), 14
PRESENCE_OFFLINE (pyryver.ryver_ws.RyverWS at-

tribute), 15
pyryver.cache_storage

60 Index

pyryver, Release 0.4.0

module, 51
pyryver.util

module, 52

R
react() (pyryver.objects.ChatMessage method), 34
react() (pyryver.objects.Message method), 32
remove() (pyryver.objects.GroupChatMember

method), 31
remove_member() (pyryver.objects.GroupChat

method), 26
reply() (pyryver.objects.Topic method), 36
request_data() (pyryver.objects.File method), 48
retry_until_available() (in module

pyryver.util), 52
ROLE_ADMIN (pyryver.objects.GroupChatMember at-

tribute), 31
ROLE_ADMIN (pyryver.objects.User attribute), 28
ROLE_GUEST (pyryver.objects.User attribute), 28
ROLE_MEMBER (pyryver.objects.GroupChatMember at-

tribute), 31
ROLE_USER (pyryver.objects.User attribute), 28
run_forever() (pyryver.ryver_ws.RyverWS method),

15
Ryver (class in pyryver.ryver), 5
RyverWS (class in pyryver.ryver_ws), 11
RyverWSTyping (class in pyryver.ryver_ws), 16

S
save() (pyryver.cache_storage.AbstractCacheStorage

method), 51
save() (pyryver.cache_storage.FileCacheStorage

method), 52
send_chat() (pyryver.ryver_ws.RyverWS method), 13
send_clear_typing() (pyryver.ryver_ws.RyverWS

method), 14
send_message() (pyryver.objects.Chat method), 22
send_presence_change()

(pyryver.ryver_ws.RyverWS method), 15
send_typing() (pyryver.ryver_ws.RyverWS method),

14
set_activated() (pyryver.objects.User method), 29
set_archived() (pyryver.objects.GroupChat

method), 27
set_auto_reconnect()

(pyryver.ryver_ws.RyverWS method), 15
set_avatar() (pyryver.objects.Chat method), 24
set_checklist() (pyryver.objects.Task method), 45
set_complete_date() (pyryver.objects.Task

method), 43
set_due_date() (pyryver.objects.Task method), 44
set_org_role() (pyryver.objects.User method), 30
set_profile() (pyryver.objects.User method), 29

set_role() (pyryver.objects.GroupChatMember
method), 31

set_status() (pyryver.objects.Notification method),
50

set_task_tags() (pyryver.objects.Chat method), 22
start() (pyryver.ryver_ws.RyverWS method), 15
start() (pyryver.ryver_ws.RyverWSTyping method),

16
stop() (pyryver.ryver_ws.RyverWSTyping method), 16
Storage (class in pyryver.objects), 47
STORAGE_TYPE_FILE (pyryver.objects.Storage

attribute), 47
STORAGE_TYPE_LINK (pyryver.objects.Storage

attribute), 47
SUBTYPE_CHAT_MESSAGE

(pyryver.objects.ChatMessage attribute),
33

SUBTYPE_TASK_ANNOUNCEMENT
(pyryver.objects.ChatMessage attribute),
33

SUBTYPE_TOPIC_ANNOUNCEMENT
(pyryver.objects.ChatMessage attribute),
33

T
Task (class in pyryver.objects), 42
TaskBoard (class in pyryver.objects), 37
TaskCategory (class in pyryver.objects), 39
Team (class in pyryver.objects), 28
terminate() (pyryver.ryver_ws.RyverWS method), 15
to_dict() (pyryver.objects.Creator method), 51
Topic (class in pyryver.objects), 35
TopicReply (class in pyryver.objects), 37
TYPE_FILE (in module pyryver.util), 54
TYPE_FORUM (in module pyryver.util), 54
TYPE_GROUPCHAT_MEMBER (in module pyryver.util),

54
TYPE_NOTIFICATION (in module pyryver.util), 54
TYPE_STORAGE (in module pyryver.util), 54
TYPE_TEAM (in module pyryver.util), 54
TYPE_TOPIC (in module pyryver.util), 54
TYPE_TOPIC_REPLY (in module pyryver.util), 54
TYPE_USER (in module pyryver.util), 54
typing() (pyryver.ryver_ws.RyverWS method), 13

U
unarchive() (pyryver.objects.Task method), 44
unarchive() (pyryver.objects.Topic method), 36
uncomplete() (pyryver.objects.Task method), 44
unreact() (pyryver.objects.ChatMessage method), 35
unreact() (pyryver.objects.Message method), 32
upload_file() (pyryver.ryver.Ryver method), 9
User (class in pyryver.objects), 28

Index 61

pyryver, Release 0.4.0

USER_TYPE_GUEST (pyryver.objects.User attribute),
28

USER_TYPE_MEMBER (pyryver.objects.User attribute),
28

W
WSChatDeletedData (class in pyryver.ws_data), 17
WSChatMessageData (class in pyryver.ws_data), 17
WSChatUpdatedData (class in pyryver.ws_data), 17
WSConnectionError (class in pyryver.ryver_ws), 16
WSEventData (class in pyryver.ws_data), 18
WSMessageData (class in pyryver.ws_data), 17
WSPresenceChangedData (class in

pyryver.ws_data), 18
WSUserTypingData (class in pyryver.ws_data), 18

62 Index

	Introduction
	Prerequisites
	Installation
	Key Information
	Quickstart
	Realtime Quickstart

	API Reference
	Session
	Realtime Client
	Callback Task Data Types

	Data Models
	Chats
	Users
	Group Chat Members
	Messages (Including Topics)
	Tasks
	Files
	Notifications
	Creators

	Utilities
	Cache Data Storage
	API Helpers
	Entity Types
	Common Field Names

	Python Module Index
	Index

