

Welcome to pyryver!

A reverse engineered and very functional API for building things that mess with Ryver(tm).

Features

	asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] ready API.

	Support for using the as-of-yet undocumented realtime WebSockets interface.

	Easy to understand design for chatting in chats, messing with messages, managing users and handling notifications.

	Only depends on aiohttp!

Example Usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	import pyryver
import asyncio

async def main():
 # Connect to ryver
 async with pyryver.Ryver("myorg", "username", "password") as ryver:
 await ryver.load_users()

 # get a user by username
 my_friend = ryver.get_user(username="tylertian123")
 # send a message to a chat (in this case a DM)
 await my_friend.send_message("hello there")

 # connect to the websockets interface
 async with ryver.get_live_session() as session:
 @session.on_chat
 def on_message(msg):
 print(msg["text"]) # print out the message's text

 # run until session.close()
 await session.run_forever()

asyncio.get_event_loop().run_until_complete(main())

Table Of Contents

	Introduction
	Prerequisites

	Installation

	Key Information

	Quickstart

	Realtime Quickstart

	API Reference
	Session

	Live Session

	Ryver Entities
	Chats

	User

	Group Chat Member

	Messages

	Files

	Notification

	Creator

	Utilities
	Cache Data Storage

	API Helpers

	Entity Types

	Common Field Names

Introduction

Prerequisites

pyryver requires Python 3.6 or later, and is regularly tested against Python 3.6 & Python 3.8.
Our only dependency is on aiohttp [https://docs.aiohttp.org/en/latest/index.html].

You may also wish to read aiohttp [https://docs.aiohttp.org/en/latest/index.html]’s information about optional prerequisites for high-performance workloads.

Installation

Installing pyryver can either be accomplished by cloning our git repository and doing the normal setup.py install, or using PyPI:

normal
pip install -U pyryver
if you have multiple versions of python
python3 -m pip install -U pyryver
if you use windows
py -3 -m pip install -U pyryver

Key Information

In Ryver’s API, the base class is a Chat. This, although somewhat unintuitive, does make sense: all of Ryver’s functionality can be accessed through one of many interfaces, all
of which support chatting. As such, pyryver’s API and this documentation often uses the word “chat” to refer to “users, teams and forums”. We also use the term “group chat” to
refer to both teams and forums, and you might see them referred to as “conferences” within the code since that’s what Ryver appears to call them (especially within the WebSocket API).

We also use the term “logged-in” user to refer to whichever user who’s credentials were passed when creating the Ryver session.

Quickstart

The core of the pyryver API is the pyryver.ryver.Ryver object, which represents a session with the Ryver OData HTTP API.

async with pyryver.Ryver("organization_url", "username", "password") as ryver:
 pass

The Ryver object also stores (and can cache) some information about the Ryver organization, specifically lists of all chats.

These can be loaded either with the type-specific pyryver.ryver.Ryver.load_users, pyryver.ryver.Ryver.load_teams and pyryver.ryver.Ryver.load_forums or with pyryver.ryver.Ryver.load_chats.
There’s also pyryer.ryver.Ryver.load_missing_chats which won’t update already loaded chats, which can be useful.

async with pyryver.Ryver("organization_url", "username", "password") as ryver:
 await ryver.load_chats()

 a_user = ryver.get_user(username="tylertian123")
 a_forum = ryver.get_groupchat(display_name="Off-Topic")

Notice that since we grab all the chats once at the beginning, the specific chat lookup methods do not need to be awaited, since they just search within pre-fetched data. Also notice that searching for users
and group chats are in separate methods; either a pyryver.objects.Forum or pyryver.objects.Team is returned depending on what gets found.

Most of the functionality of pyryver exists within these chats, such as sending/checking messages and managing topics. Additional, more specific methods (such as user and chat membership management) can also
be found within the different pyryver.objects.Chat subclasses. For example, the following code will scan the most recent 50 messages the
logged-in user sent to tylertian123 and inform them of how many times an ellipsis occurred
within them.

async with pyryver.Ryver("organization_url", "username", "password") as ryver:
 await ryver.load_chats()

 a_user = ryver.get_user(username="tylertian123")
 # a_forum = ryver.get_groupchat(display_name="Off-Topic")

 tally = 0
 for message in await a_user.get_messages(50):
 if "..." in message.get_body():
 tally += 1

 await a_user.send_message("There's been an ellipsis in here {} times".format(tally))

For more information on how to use Chats and other Ryver data types, use the Ryver entities reference.

Realtime Quickstart

Building on the previous example, what if we want our terrible ellipsis counting bot to give live updates? We can use the realtime API! The realtime interface is centred around the pyryver.ryver_ws.RyverWS object, which
can be obtained with Ryver.get_live_session(). Unlike the rest of the API, the realtime API is largely event driven. For example:

async with pyryver.Ryver("organization_url", "username", "password") as ryver:
 await ryver.load_chats()

 a_user = ryver.get_user(username="tylertian123")

 async with ryver.get_live_session() as session:
 @session.on_chat
 async def on_chat(msg):
 pass

 await session.run_forever()

There are a few things to notice here: firstly, that we can set event handlers with the various on_ decorators of the pyryver.ryver_ws.RyverWS instance (you could also call these directly like any other decorator if
you want to declare these callbacks without having obtained the pyryver.ryver_ws.RyverWS instance yet), and secondly that the realtime API starts as soon as it is created. pyryver.ryver_ws.RyverWS.run_forever() is
a helper that will run until something calls pyryver.ryver_ws.RyverWS.close(), which can be called from within event callbacks safely.

The contents of the msg parameter passed to our callback is currently just the raw JSON message from the Ryver WebSocket system. (documentation as to the fields present are available TODO) In the chat message,
there are two fields our “bot” needs to care about: “to”, which specifies which chat the message was posted in, and “text”, which is the content of the message. “from” refers to the message’s creator. Perhaps unintuitively,
the “to” field should be referring to our user’s chat, since we’re looking at a private DM. For group chats, you’d expect the chat’s ID here.

In fact, you would expect the chat’s JID here, since the websocket system uses JIDs to refer to chats. Using this information, we can complete our terrible little bot:

Note

The reason for the separate IDs is because the “ratatoskr” chat system appears to be built on XMPP, which uses these “JabberID”s to refer to users and groups.

async with pyryver.Ryver("organization_url", "username", "password") as ryver:
 await ryver.load_chats()

 a_user = ryver.get_user(username="tylertian123")
 me = ryver.get_user(username="username")

 async with ryver.get_live_session() as session:
 @session.on_chat
 async def on_chat(msg):
 # did the message come from a_user and was sent via DM to us?
 if msg["to"] == me.get_jid() and msg["from"] == a_user.get_jid():
 # did the message contain "..."?
 if "..." in msg["text"]:
 # send a reply via the non-realtime system (slow)
 # await a_user.send_message("Hey, that ellipsis is _mean_!")
 # send a reply via the realtime system
 await session.send_chat(a_user, "Hey, that ellipsis is _mean_!")

 await session.run_forever()

It’s important to note here that although the non-realtime API is perfectly accessible (and sometimes necessary) to use in event callbacks, it’s often faster to use corresponding methods in the pyryver.ryver_ws.RyverWS instance
whenever possible. For some ephemeral actions like typing indicators and presence statuses, the realtime API is the only way to accomplish certain tasks.

For more information on how to use the realtime interface, use the live session reference.

API Reference

This is the full reference of everything in pyryver.

Note

In all cases where a fully qualified name to something is used, such as pyryver.ryver.Ryver, any submodule
can be ignored, as they are all imported into the global pyryver scope.

	Session

	Live Session

	Ryver Entities
	Chats

	User

	Group Chat Member

	Messages

	Files

	Notification

	Creator

	Utilities
	Cache Data Storage

	API Helpers

	Entity Types

	Common Field Names

Session

	
class pyryver.ryver.Ryver(org: str = None, user: str = None, password: str = None, cache: Type[pyryver.cache_storage.AbstractCacheStorage] = None)

	A Ryver session contains login credentials and organization information.

This is the starting point for any application using pyryver.

If the organization or username is not provided, it will be prompted
using input(). If the password is not provided, it will be prompted
using getpass().

The cache is used to load the chats data. If not provided, no caching
will occur.

If a valid cache is provided, the chats data will be loaded in the
constructor. Otherwise, it must be loaded through load_forums(),
load_teams() and load_users() or load_chats().

	Parameters

	
	org – Your organization’s name. (as seen in the URL)

	user – The username to authenticate with.

	password – The password to authenticate with.

	cache – The aforementioned cache.

	
get_chat(**kwargs) → pyryver.objects.Chat

	Get a specific forum/team/user.

If no query parameters are supplied, more than one query parameters are
supplied or forums/teams/users are not loaded, raises ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

Allowed query parameters are:

	id

	jid

Returns none if not found.

	
async with get_live_session() → pyryver.ryver_ws.RyverWS

	Get a live session.

The session is not started unless start() is called or if it is used as
a context manager.

	
get_user(**kwargs) → pyryver.objects.User

	Get a specific user.

If no query parameters are supplied, more than one query parameters are
supplied or users are not loaded, raises ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

Allowed query parameters are:

	id

	jid

	username

	display_name

	email

Returns none if not found.

	
get_groupchat(**kwargs) → pyryver.objects.GroupChat

	Get a specific forum/team.

If no query parameters are supplied, more than one query parameters are
supplied or forums/teams are not loaded, raises ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

Allowed query parameters are:

	id

	jid

	name

	nickname

Returns none if not found.

	
await get_object(obj_type: str, obj_id: int) → pyryver.objects.Object

	Get an object from Ryver with a type and ID.

This method sends requests.

	Parameters

	
	obj_type – The type of the object to retrieve, a constant beginning with TYPE_ in pyryver.util.

	obj_id – The object’s ID.

	
await get_info() → Dict[str, Any]

	Get organization and user info.

This method returns an assortment of info. It is currently the only way
to get avatar URLs for users/teams/forums etc.
The results (returned mostly verbatim from the Ryver API) include:

	Basic user info - contains avatar URLs (“me”)

	User UI preferences (“prefs”)

	Ryver app info (“app”)

	Basic info about all users - contains avatar URLs (“users”)

	Basic info about all teams - contains avatar URLs (“teams”)

	Basic info about all forums - contains avatar URLs (“forums”)

	All available commands (“commands”)

	“messages” and “prefixes”, the purpose of which are currently unknown.

This method sends requests.

	
async for notification in get_notifs(unread: bool = False, top: int = -1, skip: int = 0) → AsyncIterator[pyryver.objects.Notification]

	Get all the user’s notifications.

This method sends requests.

	Parameters

	
	unread – If True, only return unread notifications.

	top – Maximum number of results.

	skip – Skip this many results.

	
await mark_all_notifs_read() → int

	Marks all the user’s notifications as read.

This method sends requests.

Returns how many notifications were marked as read.

	
await mark_all_notifs_seen() → int

	Marks all the user’s notifications as seen.

This method sends requests.

Returns how many notifications were marked as seen.

	
await upload_file(filename: str, filedata: Any, filetype: str = None) → pyryver.objects.Storage

	Upload a file to Ryver.

Although this method uploads a file, the returned object is an instance of Storage.
Use Storage.get_file() to obtain the actual File object.

	Parameters

	
	filename – The filename to send to Ryver. (this will show up in the UI if attached as an embed, for example)

	filedata – The file’s raw data, sent directly to aiohttp.FormData.add_field() [https://docs.aiohttp.org/en/latest/client_reference.html#aiohttp.FormData.add_field].

	
await load_chats() → None

	Load the data of all users/teams/forums.

This refreshes the cached data if a cache is supplied.

This method sends requests.

	
await load_missing_chats() → None

	Load the data of all users/teams/forums if it does not exist.

Unlike load_chats(), this does not update the cache.

This method could send requests.

	
await load_users() → None

	Load the data of all users.

This refreshes the cached data if a cache is supplied.

This method sends requests.

	
await load_forums() → None

	Load the data of all forums.

This refreshes the cached data if a cache is supplied.

This method sends requests.

	
await load_teams() → None

	Load the data of all teams.

This refreshes the cached data if a cache is supplied.

This method sends requests.

	
await close()

	Close this session.

Realtime Client

	
class pyryver.ryver_ws.RyverWS(ryver: Ryver)

	A live Ryver session using websockets.

You can construct this manually, although it is recommended to use Ryver.get_live_session().

	
@on_chat(func)

	The on chat message coroutine decorator.

This coroutine will be started as a task when a new chat message arrives.
It should take a single argument, the chat message data.

	
@on_chat_deleted(func)

	The on chat message deleted coroutine decorator.

This coroutine will be started as a task when a chat message is deleted.
It should take a single argument, the chat message data.

	
@on_chat_updated(func)

	The on chat message updated coroutine decorator.

This coroutine will be started as a task when a chat message is updated.
It should take a single argument, the chat message data.

	
@on_connection_loss(func)

	The on connection loss coroutine decorator.

This coroutine will be started as a task when the connection is lost.

	
EVENT_REACTION_ADDED = '/api/reaction/added'

	

	
EVENT_REACTION_REMOVED = '/api/reaction/removed'

	

	
EVENT_ALL = ''

	

	
@on_event(event_type: str)

	The on event coroutine decorator for a specific event or all unhandled
events.

This coroutine will be started as a task when a new event arrives with
the specified type. If the event_type is None or an empty string, it will
be called for all events that are unhandled.
It should take a single argument, the event data.

	Parameters

	event_type – The event type to listen to, one of the constants in
this class starting with EVENT_ or
RyverWS.EVENT_ALL to receieve all otherwise
unhandled messages.

	
MSG_TYPE_ALL = ''

	

	
@on_msg_type(msg_type)

	The on message type coroutine decorator for a specific message type or all
unhandled messages.

This coroutine will be started as a task when a new message arrives with
the specified type. If the msg_type is None or an empty string, it will
be called for all messages that are unhandled.
It should take a single argument, the message data.

	Parameters

	msg_type – The message type to listen to, one of the constants in
this class starting with MSG_TYPE_ or
RyverWS.MSG_TYPE_ALL to receieve all otherwise
unhandled messages.

	
await send_chat(to_chat: pyryver.objects.Chat, msg: str)

	Send a chat message to a chat.

	Parameters

	
	to_chat – The chat to send the message to.

	msg – The message contents.

	
async with typing(to_chat: pyryver.objects.Chat) → pyryver.ryver_ws.RyverWSTyping

	Get a context manager that keeps sending a typing indicator to a chat.

Useful for wrapping long running operations, like:

async with session.typing(chat):
 print("do something silly")
 await asyncio.sleep(4)
 await session.send_chat(chat, "done") # or do it outside the with, doesn't matter

	Parameters

	to_chat – Where to send the typing status.

	
await send_typing(to_chat: pyryver.objects.Chat)

	Send a typing indicator to a chat identified by JID.

The typing indicator automatically clears after a few seconds or when
a message is sent.

	Parameters

	to_chat – Where to send the typing status.

	
PRESENCE_AVAILABLE = 'available'

	

	
PRESENCE_AWAY = 'away'

	

	
PRESENCE_DO_NOT_DISTURB = 'dnd'

	

	
PRESENCE_OFFLINE = 'unavailable'

	

	
await send_presence_change(presence: str)

	Send a presence change message.

	Parameters

	presence – The new presence, a constant in this class starting with PRESENCE_

Note

If you use this class as an async with context manager, you don’t need to call
these two methods, unless you want to break out of a RyverWS.run_forever().

	
await start()

	Start the session.

	
await close()

	Close the session.

Any future operation after closing will result in a ClosedError being raised.

	
await run_forever()

	Run forever, or until the connection is closed.

	
class pyryver.ryver_ws.RyverWSTyping(rws: pyryver.ryver_ws.RyverWS, to: pyryver.objects.Chat)

	A context manager returned by RyverWS to keep sending a typing
indicator.

You should not create this class yourself, rather use RyverWS.start_typing() instead.

	
start()

	Start sending the typing indicator.

	
await stop()

	Stop sending the typing indicator.

Note that the typing indicator doesn’t clear immediately. It will clear
by itself after about 3 seconds, or when a message is sent.

	
class pyryver.ryver_ws.ClosedError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

An exception raised to indicate that the session has been closed.

Data Models

	
class pyryver.objects.Object(ryver: pyryver.ryver.Ryver, obj_type: str, data: dict)

	Base class for all Ryver objects.

	Parameters

	
	ryver – The parent pyryver.pyryver.Ryver instance.

	obj_type – The object’s type, a constant beginning with TYPE_ in pyryver.util.

	
get_entity_type() → str

	Get the entity type of this object.

	
get_id() → Any

	Get the ID of this object.

This is usually an integer, however for messages it is a string instead.

	
get_raw_data() → dict

	Get the raw data of this object.

The raw data is a dictionary directly obtained from parsing the JSON
response.

	
get_ryver() → pyryver.ryver.Ryver

	Get the Ryver session this object was retrieved from.

	
get_type() → str

	Get the type of this object.

Chats

	
class pyryver.objects.Chat(ryver: pyryver.ryver.Ryver, obj_type: str, data: dict)

	Bases: pyryver.objects.Object

Any Ryver chat you can send messages to.

E.g. Teams, forums, user DMs, etc.

	
await create_topic(subject: str, body: str, creator: pyryver.objects.Creator = None) → pyryver.objects.Topic

	Create a topic in this chat.

This method sends requests.

Returns the topic created.

	Parameters

	
	subject – The subject (or title) of the new topic.

	body – The contents of the new topic.

	creator – The overriden creator; optional, if unset uses the logged-in user’s profile.

	
get_jid() → str

	Get the JID (JabberID) of this chat.

The JID is used in the websockets interface.

	
await get_message_from_id(id: str, before: int = 0, after: int = 0) → List[pyryver.objects.Message]

	Get a message from an ID, optionally also messages before and after it too.

Warning

Before and after cannot exceed 25 messages, otherwise an HTTPError will be raised
with the error code 400 Bad Request.

This method sends requests.

This method does not support top/skip.

	Parameters

	
	id – The ID of the message to retrieve, and the reference point for the before and after parameters.

	before – How many extra messages to retrieve before the specified one.

	after – How many extra messages to retrieve after the specified one.

	
await get_messages(count: int) → List[pyryver.objects.ChatMessage]

	Get a number of messages (most recent first) in this chat.

This method sends requests.

	Parameters

	count – Maximum number of results.

	
abstractmethod get_name() → str

	Get the name of this chat.

	
async for ... in get_topics(archived: bool = False, top: int = -1, skip: int = 0) → AsyncIterator[pyryver.objects.Topic]

	Get all the topics in this chat.

This method sends requests.

	Parameters

	
	archived – If True, only include archived topics in the results, otherwise, only include non-archived topics.

	top – Maximum number of results; optional, if unspecified return all results.

	skip – Skip this many results.

	
await send_message(message: str, creator: pyryver.objects.Creator = None) → str

	Send a message to this chat.

Specify a creator to override the username and profile of the message creator.

This method sends requests.

Returns the ID of the chat message sent. Note that message IDs are
strings.

	Parameters

	
	message – The message contents.

	creator – The overriden creator; optional, if unset uses the logged-in user’s profile.

	
class pyryver.objects.GroupChat(ryver: pyryver.ryver.Ryver, obj_type: str, data: dict)

	Bases: pyryver.objects.Chat

A Ryver team or forum.

	
await get_member(id: int) → pyryver.objects.GroupChatMember

	Get a member by user ID.

This method sends requests.

If the user is not found, this method will return None.

	
async for ... in get_members(top: int = -1, skip: int = 0) → AsyncIterator[pyryver.objects.GroupChatMember]

	Get all the members of this chat.

This method sends requests.

	Parameters

	
	top – Maximum number of results; optional, if unspecified return all results.

	skip – Skip this many results.

	
get_name() → str

	Get the name of this chat.

	
get_nickname() → str

	Get the nickname of this chat.

	
class pyryver.objects.Forum(ryver: pyryver.ryver.Ryver, obj_type: str, data: dict)

	Bases: pyryver.objects.GroupChat

A Ryver forum.

	
class pyryver.objects.Team(ryver: pyryver.ryver.Ryver, obj_type: str, data: dict)

	Bases: pyryver.objects.GroupChat

A Ryver team.

User

	
class pyryver.objects.User(ryver: pyryver.ryver.Ryver, obj_type: str, data: dict)

	Bases: pyryver.objects.Chat

A Ryver user.

	
ROLE_ADMIN = 'ROLE_ADMIN'

	

	
ROLE_GUEST = 'ROLE_GUEST'

	

	
ROLE_USER = 'ROLE_USER'

	

	
await create_topic(from_user: pyryver.objects.User, subject: str, body: str, creator: pyryver.objects.Creator = None) → pyryver.objects.Topic

	Create a topic in this user’s DMs.

This method sends requests.

Returns the topic created.

	Parameters

	
	from_user – The user that will create the topic; must be the same as the logged-in user.

	subject – The subject (or title) of the created topic.

	body – The contents of the created topic.

	
get_about() → str

	Get this user’s About.

	
get_activated() → bool

	Get whether this user’s account is activated.

	
get_display_name() → str

	Get the display name of this user.

	
get_email_address() → str

	Get this user’s Email Address.

	
get_name() → str

	Get the display name of this user.

	
get_role() → str

	Get this user’s role in their profile.

Note

This is different from get_roles(). While this one gets the “Role”
of the user from the profile, get_roles() gets the user’s roles in the
organization (user, guest, admin).

	
get_roles() → List[str]

	Get this user’s role in the organization.

Note

This is different from get_role(). While this one gets the user’s
roles in the organization (user, guest, admin), get_role() gets the
user’s role from their profile.

	
get_time_zone() → str

	Get this user’s Time Zone.

	
get_username() → str

	Get the username of this user.

	
is_admin() → bool

	Get whether this user is an org admin.

	
await set_activated(activated: bool) → None

	Activate or deactivate the user. Requires admin.

This method sends requests.

Note

This also updates these properties in this object.

	
await set_org_role(role: str) → None

	Set a user’s role in this organization, as described in get_roles().

This can be either ROLE_USER, ROLE_ADMIN or ROLE_GUEST.

This method sends requests.

Note

This also updates these properties in this object.

	
await set_profile(display_name: str = None, role: str = None, about: str = None) → None

	Update this user’s profile.

If any of the arguments are None, they will not be changed.

This method sends requests.

Note

This also updates these properties in this object.

	Parameters

	
	display_name – The user’s new display_name.

	role – The user’s new role, as described in get_role().

	about – The user’s new “about me” blurb.

Group Chat Member

	
class pyryver.objects.GroupChatMember(ryver: pyryver.ryver.Ryver, obj_type: str, data: dict)

	Bases: pyryver.objects.Object

A member in a forum or team.

	
ROLE_ADMIN = 'ROLE_TEAM_ADMIN'

	

	
ROLE_MEMBER = 'ROLE_TEAM_MEMBER'

	

	
get_role() → str

	Get the role of this member.

	
get_user() → pyryver.objects.User

	Get this member as a User object.

	
is_admin() → bool

	Get whether this member is an admin of their forum.

Warning

This method does not check for org admins.

Messages

	
class pyryver.objects.Message(ryver: pyryver.ryver.Ryver, obj_type: str, data: dict)

	Bases: pyryver.objects.Object

Any generic Ryver message, with an author, body, and reactions.

	
get_attached_file() → pyryver.objects.File

	Get the file attached to this message, if there is one.

Note that files obtained from this only have a limited amount of information,
including the ID, name, URL, size and type. Attempting to get any other info
will result in a KeyError. To obtain the full file info, use Ryver.get_object()
with TYPE_FILE and the ID.

Returns None otherwise.

	
await get_author() → pyryver.objects.User

	Get the author of this message, as a User object.

This method sends requests.

	
abstractmethod get_author_id() → int

	Get the ID of the author of this message.

	
abstractmethod get_body() → str

	Get the body of this message.

	
get_creator() → pyryver.objects.Creator

	Get the Creator of this message.

Note that this is different from the author. Creators are used to
override the display name and avatar of a user. If the username and
avatar were not overridden, this will return None.

	
get_reaction_counts() → dict

	Count the number of reactions for each emoji on a message.

Returns a dict of {emoji: number_of_reacts}.

	
get_reactions() → dict

	Get the reactions on this message.

Returns a dict of {emoji: [users]}.

	
await react(emoji: str) → None

	React to a message with an emoji.

This method sends requests.

	Parameters

	emoji – The string name of the reacji (e.g. “thumbsup”).

	
class pyryver.objects.ChatMessage(ryver: pyryver.ryver.Ryver, obj_type: str, data: dict)

	Bases: pyryver.objects.Message

A Ryver chat message.

	
await delete() → None

	Deletes the message.

	
await edit(body: str, creator: pyryver.objects.Creator = None) → None

	Edit the message.

	Parameters

	
	body – The new message content.

	creator – The new message creator; optional, if unset left as-is.

	
get_author_id() → int

	Get the ID of the author of this message.

	
get_body() → str

	Get the message body.

	
await get_chat() → pyryver.objects.Chat

	Get the chat that this message was sent to, as a Chat object.

This method sends requests.

	
get_chat_id() → int

	Get the id of the chat that this message was sent to, as an integer.

Note that this is different from get_chat() as the id is stored in
the message data and is good for most API purposes while get_chat()
returns an entire Chat object, which might not be necessary depending
on what you’re trying to do.

	
get_chat_type() → str

	Gets the type of chat that this message was sent to, as a string.

This string will be one of the ENTITY_TYPES values

	
await react(emoji: str) → None

	React to a message with an emoji.

This method sends requests.

	Parameters

	emoji – The string name of the reacji (e.g. “thumbsup”).

	
class pyryver.objects.Topic(ryver: pyryver.ryver.Ryver, obj_type: str, data: dict)

	Bases: pyryver.objects.Message

A Ryver topic in a chat.

	
get_author_id() → int

	Get the ID of the author of this topic.

	
get_body() → str

	Get the body of this topic.

	
async for ... in get_replies(top: int = -1, skip: int = 0) → AsyncIterator[pyryver.objects.TopicReply]

	Get all the replies to this topic.

This method sends requests.

	Parameters

	
	top – Maximum number of results; optional, if unspecified return all results.

	skip – Skip this many results.

	
get_subject() → str

	Get the subject of this topic.

	
await reply(message: str, creator: pyryver.objects.Creator = None) → pyryver.objects.TopicReply

	Reply to the topic.

This method sends requests.

For unknown reasons, overriding the creator does not work for this method.

	Parameters

	message – The reply content

	
class pyryver.objects.TopicReply(ryver: pyryver.ryver.Ryver, obj_type: str, data: dict)

	Bases: pyryver.objects.Message

A reply on a topic.

	
get_author() → pyryver.objects.User

	Get the author of this reply, as a User object.

Unlike the other implementations, this does not send any requests.

	
get_author_id() → int

	Get the ID of the author of this reply.

	
get_body() → str

	Get the body of this message.

	
get_topic() → pyryver.objects.Topic

	Get the topic this reply was sent to.

Files

	
class pyryver.objects.Storage(ryver: pyryver.ryver.Ryver, obj_type: str, data: dict)

	Bases: pyryver.objects.Object

Generic storage, e.g. uploaded files.

Note that while storage objects contain files, the File class does not
inherit from this class.

	
get_file() → pyryver.objects.File

	Get the file stored.

	
class pyryver.objects.File(ryver: pyryver.ryver.Ryver, obj_type: str, data: dict)

	Bases: pyryver.objects.Object

An uploaded file.

This class also contains constants for some common MIME types.

	
await delete() → None

	Delete this file.

This method sends requests.

	
await download_data() → bytes

	Download the file data.

This method sends requests.

	
get_MIME_type() → str

	Get the MIME type of this file.

	
get_name() → str

	Get the name of this file.

	
get_size() → int

	Get the size of this file in bytes.

	
get_title() → str

	Get the title of this file.

	
get_url() → str

	Get the URL of this file.

	
request_data() → aiohttp.client_reqrep.ClientResponse

	Get the file data.

Returns an aiohttp request response to the file URL.

Notification

	
class pyryver.objects.Notification(ryver: pyryver.ryver.Ryver, obj_type: str, data: dict)

	Bases: pyryver.objects.Object

A Ryver user notification.

	
PREDICATE_COMMENT = 'commented_on'

	

	
PREDICATE_GROUP_MENTION = 'group_mention'

	

	
PREDICATE_MENTION = 'chat_mention'

	

	
PREDICATE_TASK_COMPLETED = 'completed'

	

	
get_new() → bool

	Get whether this notification is new.

	
get_object() → dict

	Get the “object” of this notification.

The exact nature of this field is not yet known, but it seems to be the
target of an @mention for mentions, the topic for topic comments, or the
task for task activities.

	
get_object_entity_type() → str

	Get entity type of the “object” of this notification.

The exact nature of this field is not yet known, but it seems to be the
target of an @mention for mentions, the topic for topic comments, or the
task for task activities.

	
get_object_id() → int

	Get the ID of the “object” of this notification.

The exact nature of this field is not yet known, but it seems to be the
target of an @mention for mentions, the topic for topic comments, or the
task for task activities.

	
get_predicate() → str

	Get the “predicate”, or type, of this notification.

	E.g.

	
	chat_mention - User was @mentioned

	group_mention - User was mentioned through @team or @here

	commented_on - A topic was commented on

	completed - A task was completed

	
get_subject_entity_type() → str

	Get the entity type of the “subject” of this notification.

The exact nature of this field is not yet known, but it seems to be the
user that did the action which caused this notification.

	
get_subject_id() → int

	Get the ID of the “subject” of this notification.

The exact nature of this field is not yet known, but it seems to be the
user that did the action which caused this notification.

	
get_subjects() → List[dict]

	Get the “subjects” of this notification.

The exact nature of this field is not yet known, but it seems to be the
user that did the action which caused this notification. It is also
unknown why this is an array, as it seems to only ever contain one
element.

	
get_unread() → bool

	Get whether this notification is unread.

	
get_via() → dict

	Get the “via” of this notification.

The exact nature of this field is not yet known, but it seems to
contain information about whatever caused this notification. For
example, the chat message of an @mention, the topic reply for a reply,
etc. For task completions, there is NO via.

	
get_via_entity_type() → str

	Get the entity type of the “via” of this notification.

The exact nature of this field is not yet known, but it seems to
contain information about whatever caused this notification. For
example, the chat message of an @mention, the topic reply for a reply,
etc. For task completions, there is NO via.

	
get_via_id() → int

	Get the ID of the “via” of this notification.

The exact nature of this field is not yet known, but it seems to
contain information about whatever caused this notification. For
example, the chat message of an @mention, the topic reply for a reply,
etc. For task completions, there is NO via.

	
await set_status(unread: bool, new: bool) → None

	Set the read/unread and seen/unseen (new) status of this notification.

This method sends requests.

Note

This also updates these properties in this object.

Creator

	
class pyryver.objects.Creator(name: str, avatar: str)

	A message creator, with a name and an avatar.

This can be used to override the sender’s display name and avatar.

	Parameters

	
	name – The overriden display name

	avatar – The overriden avatar (a url to an image)

	
to_dict() → dict

	Convert this Creator object to a dictionary to be used in a request.

Intended for internal use.

Utilities

Cache Data Storage

	
class pyryver.cache_storage.AbstractCacheStorage

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

An abstract class defining the requirements for cache storages.

A cache storage is used by the Ryver class to cache chats data to improve
performance.

	
abstractmethod load(ryver: Ryver, obj_type: str) → List[pyryver.objects.Object]

	Load all saved objects of a specific type.

If no objects were saved, this method returns an empty list.

	
abstractmethod save(obj_type: str, data: List[pyryver.objects.Object]) → None

	Save all objects of a specific type.

	
class pyryver.cache_storage.FileCacheStorage(root_dir: str = '.', prefix: str = '')

	Bases: pyryver.cache_storage.AbstractCacheStorage

A cache storage implementation using files.

	
load(ryver: Ryver, obj_type: str) → List[pyryver.objects.Object]

	Load all saved objects of a specific type.

If no objects were saved, this method returns an empty list.

	
save(obj_type: str, data: List[pyryver.objects.Object]) → None

	Save all objects of a specific type.

API Helpers

	
async for ... in pyryver.util.get_all(session: aiohttp.client.ClientSession, url: str, top: int = -1, skip: int = 0, param_sep: str = '?') → List[dict]

	Because the REST API only gives 50 results at a time, this function is used
to retrieve all objects.

Intended for internal use only.

	
pyryver.util.get_type_from_entity(entity_type: str) → str

	Gets the object type from the entity type.

Note that it doesn’t actually return a class, just the string.

Intended for internal use only.

	
await pyryver.util.retry_until_available(coro: Awaitable[T], *args, timeout: float = None, **kwargs) → T

	Repeatedly tries to do some action (usually getting a resource) until the
resource becomes available or a timeout elapses.

This function will try to run the given coroutine once every 0.5 seconds. If
it results in a 404, the function tries again. Otherwise, the exception is
raised.

If it times out, an asyncio.TimeoutError [https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.TimeoutError] will be raised.

args and kwargs are passed to the coroutine.

	Parameters

	
	coro – The coroutine to run

	timeout – The timeout in seconds, or None for no timeout

	
pyryver.objects.get_obj_by_field(objs: List[pyryver.objects.Object], field: str, value: Any) → pyryver.objects.Object

	Gets an object from a list of objects by a field.

For example, this function can find a chat with a specific nickname in a
list of chats.

	Parameters

	
	objs – List of objects to search in.

	field – The field’s name (usually a constant beginning with FIELD_ in pyryver.util) within the object’s JSON data.

	value – The value to look for.

Entity Types

	
pyryver.util.TYPE_USER

	Corresponds to pyryver.objects.User.

	
pyryver.util.TYPE_FORUM

	Corresponds to pyryver.objects.Forum.

	
pyryver.util.TYPE_TEAM

	Corresponds to pyryver.objects.Team.

	
pyryver.util.TYPE_GROUPCHAT_MEMBER

	Corresponds to pyryver.objects.GroupChatMember.

	
pyryver.util.TYPE_TOPIC

	Corresponds to pyryver.objects.Topic.

	
pyryver.util.TYPE_TOPIC_REPLY

	Corresponds to pyryver.objects.TopicReply.

	
pyryver.util.TYPE_NOTIFICATION

	Corresponds to pyryver.objects.Notification.

	
pyryver.util.TYPE_STORAGE

	Corresponds to pyryver.objects.Storage.

	
pyryver.util.TYPE_FILE

	Corresponds to pyryver.objects.File.

Common Field Names

	
pyryver.util.FIELD_USERNAME

	

	
pyryver.util.FIELD_EMAIL_ADDR

	

	
pyryver.util.FIELD_DISPLAY_NAME

	The object’s display name (friendly name)

	
pyryver.util.FIELD_NAME

	

	
pyryver.util.FIELD_NICKNAME

	

	
pyryver.util.FIELD_ID

	The object’s ID, sometimes an int [https://docs.python.org/3/library/functions.html#int], sometimes a str [https://docs.python.org/3/library/stdtypes.html#str] depending on the object type.

	
pyryver.util.FIELD_JID

	The object’s JID, or JabberID. Used in the live socket interface for referring to chats.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyryver	

 	
 	
 pyryver.cache_storage	

 	
 	
 pyryver.util	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	AbstractCacheStorage (class in pyryver.cache_storage)

C

 	
 	Chat (class in pyryver.objects)

 	ChatMessage (class in pyryver.objects)

 	close() (pyryver.ryver.Ryver method)

 	(pyryver.ryver_ws.RyverWS method)

 	
 	ClosedError (class in pyryver.ryver_ws)

 	create_topic() (pyryver.objects.Chat method)

 	(pyryver.objects.User method)

 	Creator (class in pyryver.objects)

D

 	
 	delete() (pyryver.objects.ChatMessage method)

 	(pyryver.objects.File method)

 	
 	download_data() (pyryver.objects.File method)

E

 	
 	edit() (pyryver.objects.ChatMessage method)

 	EVENT_ALL (pyryver.ryver_ws.RyverWS attribute)

 	
 	EVENT_REACTION_ADDED (pyryver.ryver_ws.RyverWS attribute)

 	EVENT_REACTION_REMOVED (pyryver.ryver_ws.RyverWS attribute)

F

 	
 	FIELD_DISPLAY_NAME (in module pyryver.util)

 	FIELD_EMAIL_ADDR (in module pyryver.util)

 	FIELD_ID (in module pyryver.util)

 	FIELD_JID (in module pyryver.util)

 	FIELD_NAME (in module pyryver.util)

 	
 	FIELD_NICKNAME (in module pyryver.util)

 	FIELD_USERNAME (in module pyryver.util)

 	File (class in pyryver.objects)

 	FileCacheStorage (class in pyryver.cache_storage)

 	Forum (class in pyryver.objects)

G

 	
 	get_about() (pyryver.objects.User method)

 	get_activated() (pyryver.objects.User method)

 	get_all() (in module pyryver.util)

 	get_attached_file() (pyryver.objects.Message method)

 	get_author() (pyryver.objects.Message method)

 	(pyryver.objects.TopicReply method)

 	get_author_id() (pyryver.objects.ChatMessage method)

 	(pyryver.objects.Message method)

 	(pyryver.objects.Topic method)

 	(pyryver.objects.TopicReply method)

 	get_body() (pyryver.objects.ChatMessage method)

 	(pyryver.objects.Message method)

 	(pyryver.objects.Topic method)

 	(pyryver.objects.TopicReply method)

 	get_chat() (pyryver.objects.ChatMessage method)

 	(pyryver.ryver.Ryver method)

 	get_chat_id() (pyryver.objects.ChatMessage method)

 	get_chat_type() (pyryver.objects.ChatMessage method)

 	get_creator() (pyryver.objects.Message method)

 	get_display_name() (pyryver.objects.User method)

 	get_email_address() (pyryver.objects.User method)

 	get_entity_type() (pyryver.objects.Object method)

 	get_file() (pyryver.objects.Storage method)

 	get_groupchat() (pyryver.ryver.Ryver method)

 	get_id() (pyryver.objects.Object method)

 	get_info() (pyryver.ryver.Ryver method)

 	get_jid() (pyryver.objects.Chat method)

 	get_live_session() (pyryver.ryver.Ryver method)

 	get_member() (pyryver.objects.GroupChat method)

 	get_members() (pyryver.objects.GroupChat method)

 	get_message_from_id() (pyryver.objects.Chat method)

 	get_messages() (pyryver.objects.Chat method)

 	get_MIME_type() (pyryver.objects.File method)

 	get_name() (pyryver.objects.Chat method)

 	(pyryver.objects.File method)

 	(pyryver.objects.GroupChat method)

 	(pyryver.objects.User method)

 	
 	get_new() (pyryver.objects.Notification method)

 	get_nickname() (pyryver.objects.GroupChat method)

 	get_notifs() (pyryver.ryver.Ryver method)

 	get_obj_by_field() (in module pyryver.objects)

 	get_object() (pyryver.objects.Notification method)

 	(pyryver.ryver.Ryver method)

 	get_object_entity_type() (pyryver.objects.Notification method)

 	get_object_id() (pyryver.objects.Notification method)

 	get_predicate() (pyryver.objects.Notification method)

 	get_raw_data() (pyryver.objects.Object method)

 	get_reaction_counts() (pyryver.objects.Message method)

 	get_reactions() (pyryver.objects.Message method)

 	get_replies() (pyryver.objects.Topic method)

 	get_role() (pyryver.objects.GroupChatMember method)

 	(pyryver.objects.User method)

 	get_roles() (pyryver.objects.User method)

 	get_ryver() (pyryver.objects.Object method)

 	get_size() (pyryver.objects.File method)

 	get_subject() (pyryver.objects.Topic method)

 	get_subject_entity_type() (pyryver.objects.Notification method)

 	get_subject_id() (pyryver.objects.Notification method)

 	get_subjects() (pyryver.objects.Notification method)

 	get_time_zone() (pyryver.objects.User method)

 	get_title() (pyryver.objects.File method)

 	get_topic() (pyryver.objects.TopicReply method)

 	get_topics() (pyryver.objects.Chat method)

 	get_type() (pyryver.objects.Object method)

 	get_type_from_entity() (in module pyryver.util)

 	get_unread() (pyryver.objects.Notification method)

 	get_url() (pyryver.objects.File method)

 	get_user() (pyryver.objects.GroupChatMember method)

 	(pyryver.ryver.Ryver method)

 	get_username() (pyryver.objects.User method)

 	get_via() (pyryver.objects.Notification method)

 	get_via_entity_type() (pyryver.objects.Notification method)

 	get_via_id() (pyryver.objects.Notification method)

 	GroupChat (class in pyryver.objects)

 	GroupChatMember (class in pyryver.objects)

I

 	
 	is_admin() (pyryver.objects.GroupChatMember method)

 	(pyryver.objects.User method)

L

 	
 	load() (pyryver.cache_storage.AbstractCacheStorage method)

 	(pyryver.cache_storage.FileCacheStorage method)

 	load_chats() (pyryver.ryver.Ryver method)

 	
 	load_forums() (pyryver.ryver.Ryver method)

 	load_missing_chats() (pyryver.ryver.Ryver method)

 	load_teams() (pyryver.ryver.Ryver method)

 	load_users() (pyryver.ryver.Ryver method)

M

 	
 	mark_all_notifs_read() (pyryver.ryver.Ryver method)

 	mark_all_notifs_seen() (pyryver.ryver.Ryver method)

 	
 	Message (class in pyryver.objects)

 	MSG_TYPE_ALL (pyryver.ryver_ws.RyverWS attribute)

N

 	
 	Notification (class in pyryver.objects)

O

 	
 	Object (class in pyryver.objects)

 	on_chat() (pyryver.ryver_ws.RyverWS method)

 	on_chat_deleted() (pyryver.ryver_ws.RyverWS method)

 	
 	on_chat_updated() (pyryver.ryver_ws.RyverWS method)

 	on_connection_loss() (pyryver.ryver_ws.RyverWS method)

 	on_event() (pyryver.ryver_ws.RyverWS method)

 	on_msg_type() (pyryver.ryver_ws.RyverWS method)

P

 	
 	PREDICATE_COMMENT (pyryver.objects.Notification attribute)

 	PREDICATE_GROUP_MENTION (pyryver.objects.Notification attribute)

 	PREDICATE_MENTION (pyryver.objects.Notification attribute)

 	PREDICATE_TASK_COMPLETED (pyryver.objects.Notification attribute)

 	PRESENCE_AVAILABLE (pyryver.ryver_ws.RyverWS attribute)

 	
 	PRESENCE_AWAY (pyryver.ryver_ws.RyverWS attribute)

 	PRESENCE_DO_NOT_DISTURB (pyryver.ryver_ws.RyverWS attribute)

 	PRESENCE_OFFLINE (pyryver.ryver_ws.RyverWS attribute)

 	pyryver.cache_storage (module)

 	pyryver.util (module)

R

 	
 	react() (pyryver.objects.ChatMessage method)

 	(pyryver.objects.Message method)

 	reply() (pyryver.objects.Topic method)

 	request_data() (pyryver.objects.File method)

 	retry_until_available() (in module pyryver.util)

 	ROLE_ADMIN (pyryver.objects.GroupChatMember attribute)

 	(pyryver.objects.User attribute)

 	
 	ROLE_GUEST (pyryver.objects.User attribute)

 	ROLE_MEMBER (pyryver.objects.GroupChatMember attribute)

 	ROLE_USER (pyryver.objects.User attribute)

 	run_forever() (pyryver.ryver_ws.RyverWS method)

 	Ryver (class in pyryver.ryver)

 	RyverWS (class in pyryver.ryver_ws)

 	RyverWSTyping (class in pyryver.ryver_ws)

S

 	
 	save() (pyryver.cache_storage.AbstractCacheStorage method)

 	(pyryver.cache_storage.FileCacheStorage method)

 	send_chat() (pyryver.ryver_ws.RyverWS method)

 	send_message() (pyryver.objects.Chat method)

 	send_presence_change() (pyryver.ryver_ws.RyverWS method)

 	send_typing() (pyryver.ryver_ws.RyverWS method)

 	set_activated() (pyryver.objects.User method)

 	
 	set_org_role() (pyryver.objects.User method)

 	set_profile() (pyryver.objects.User method)

 	set_status() (pyryver.objects.Notification method)

 	start() (pyryver.ryver_ws.RyverWS method)

 	(pyryver.ryver_ws.RyverWSTyping method)

 	stop() (pyryver.ryver_ws.RyverWSTyping method)

 	Storage (class in pyryver.objects)

T

 	
 	Team (class in pyryver.objects)

 	to_dict() (pyryver.objects.Creator method)

 	Topic (class in pyryver.objects)

 	TopicReply (class in pyryver.objects)

 	TYPE_FILE (in module pyryver.util)

 	TYPE_FORUM (in module pyryver.util)

 	TYPE_GROUPCHAT_MEMBER (in module pyryver.util)

 	
 	TYPE_NOTIFICATION (in module pyryver.util)

 	TYPE_STORAGE (in module pyryver.util)

 	TYPE_TEAM (in module pyryver.util)

 	TYPE_TOPIC (in module pyryver.util)

 	TYPE_TOPIC_REPLY (in module pyryver.util)

 	TYPE_USER (in module pyryver.util)

 	typing() (pyryver.ryver_ws.RyverWS method)

U

 	
 	upload_file() (pyryver.ryver.Ryver method)

 	
 	User (class in pyryver.objects)

 A reverse engineered and very functional API for building things that mess with Ryver(tm).

Features

	asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] ready API.

	Support for using the as-of-yet undocumented realtime WebSockets interface.

	Easy to understand design for chatting in chats, messing with messages, managing users and handling notifications.

	Only depends on aiohttp!

Example Usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	import pyryver
import asyncio

async def main():
 # Connect to ryver
 async with pyryver.Ryver("myorg", "username", "password") as ryver:
 await ryver.load_users()

 # get a user by username
 my_friend = ryver.get_user(username="tylertian123")
 # send a message to a chat (in this case a DM)
 await my_friend.send_message("hello there")

 # connect to the websockets interface
 async with ryver.get_live_session() as session:
 @session.on_chat
 def on_message(msg):
 print(msg["text"]) # print out the message's text

 # run until session.close()
 await session.run_forever()

asyncio.get_event_loop().run_until_complete(main())

Table Of Contents

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to pyryver!

 		
 Introduction

 		
 Prerequisites

 		
 Installation

 		
 Key Information

 		
 Quickstart

 		
 Realtime Quickstart

 		
 API Reference

 		
 Session

 		
 Live Session

 		
 Ryver Entities

 		
 Chats

 		
 User

 		
 Group Chat Member

 		
 Messages

 		
 Files

 		
 Notification

 		
 Creator

 		
 Utilities

 		
 Cache Data Storage

 		
 API Helpers

 		
 Entity Types

 		
 Common Field Names

_static/up.png

_static/up-pressed.png

